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Introduction 
Surface-based approaches have frequently been used to analyse social and economic data.  Using 
approaches such as kernel regression it has been possible to fit continuous surfaces to spatially 
reference social and economic data,  such as house prices.  The technique has often proved a useful 
tool in identifying trends in the data - for example one can identify areas of town in which housing 
is generally more costly.  
 
Thus, the idea of kernel regression is to estimate trend surfaces - so that if we have a set of points, 
say (x,y) and each one has a continuous scale attribute (say z) then the aim is to estimate the value 
of z at values of (x,y) other than those in the data set - essentially estimating a z-surface from a set 
of point observations of z.  This is done by creating a kernel around the point (x,y) and taking a 
weighted mean of z-values of points in the vicinity of (x,y)  - the weight decreasing the further the 
data points are away from (x,y). A typical kernel function might be  
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where d is the distance from the point at which we estimate z and a point in the data set,  and w is 
the weight given to the z value associated with that data point.  k is a smoothing parameter - the 
larger its value the smoother the trend surface. 
In a sense a regression surface passes smoothly through the centre of the observed z-values if 
viewed as a 3D point cloud - so observed and fitted values at points in the data set may differ.  This 
is a sensible approach if the observed z-values may be subject to sampling variation or other 
random factors influencing the sale price of a house.  
 
Here not only smooth regression surfaces are considered,  but also surfaces in which there may be 
discontinuities.  An example highlighting the differences is shown in fig. 1. Both surfaces were 
computed from the same set of point samples,  but the RHS panel is the result of trend estimation 
with discontinuity detection,  whereas the LHS panel uses a standard approach.  Since the RHS 
approach applies smoothing over a window regardless of discontinuity,  the effect is to smooth 
away this feature. 
 



 

 

  
Figure 1. Two surfaces: LHS without discontinuities, RHS with discontinuities. 

 
In this paper,  two approaches to kernel smoothing - both modifying the basic kernel smoothing 
idea in different ways, will be outlined. The methods outlined are relevant to both physical and 
human geography data - in physical terms it allows terrain modeling with cliff edges,  for example,  
but in this instance focus will be given to the fact that it can also be used to detect metaphorical 
fault lines in terms of social data - situations in which relatively affluent regions lie beside areas of 
high deprivation,  or where house prices suddenly increase when a ‘golden postcode’ boundary is 
crossed. It is also worth noting that both methods detect discontinuities rather than work with 
locations deemed discontinous on an a priori basis. 
 
The two methods will now be outlined: 
 
Anisotropic Smoothing 
This method is due to Perona and Malik (1990). This operates on regular grid data. One way of 
smoothing grid data (without detecting discontinuities) is to replace the value of each pixel in the 
grid with a weighted average its immediate neighbours:  

   zi, j
* =
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The asterisk on the z denotes an updated value,  and this computation is applied to each z in the 2D 
array.  This only applies a small amount of smoothing - it is rather like a moving window approach 
where the window is just one pixel wide.  An effect equivalent to a larger window can be achieved 
by repeatedly applying the operation just described. 
 
Here the weights do not depend on the indices i and j - they are stationary - and the overall effect is 
similar to moving window smoothing.  Unfortunately,  for that reason,  this approach also does not 
work well with discontinuities.  However,  suppose that the weights used were reduced in situations 
where the values of adjacent pixels were very different,  or were on a rapidly changing part of the 
surface.  This would reduce the ‘smoothing off of edges’ problem outlined in the last section.   
 
One way to do this would be to make the weights depend on the slope estimates at each of the 
pixels - so that the influence of pixels on steeply sloping parts of the surface would be downgraded 
in the smoothing process.  This could be achieved by a minor modification of the smoothing 
approach outlined above:   
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     where wi, j = f (si, j )      (3)
  
and si, j   is a slope estimate at pixel (i,j).  Typically,  f is a decreasing function,  for example 
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so that the influence of pixels on a steep slope is downgraded.   
 
As with the straightforward pixel based smoothing a single smooth operation takes place over a 
very tight window,  but this time it does not over smooth when the surface changes rapidly.  As 
before,  the effect of using larger smoothing windows is achieved by repeated application.  
Typically,  20 or 30 applications are used. 
 
A final issue here is how the slope estimation is carried out.  There are a number of possibilities - 
for example using Horn’s method - however here,  a fairly simple approach appears to be effective. 
Assuming the grid spacing of the pixels is the same in the x and y directions a reasonable estimator 
of slope is: 
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This only applies to gridded data,  and in social and economic data,  irregular points are often 
found.   This technique requires the z-values to be known at the points where the trend is to be 
fitted,  and using regular gridded data is a convenient way of ensuring this that will be the case.  
However,  the question remains: “how can one apply this approach to irregular data?”.  The simple 
answer here is that a standard moving window smoother is first applied to the irregular data, 
resulting in a grid of values and subsequently the anisotropic diffusion filter is applied to this grid.  
One issue here is that this involves the data undergoing two smoothing processes - and so there is a 
danger of oversmoothing.  Usually this can be solved by carrying out the first standard smoothing 
with a very small window - the aim here is really just to transform the data into regular grid format - 
and then to apply anisotropic smoothing. 
 
 
Bilateral Filtering 
This method is due to Tomasi and Manduchi (1998). This method also involves controlling the 
degree of smoothing when there is a large difference between the z-values of nearby points.  To do 
this a kernel function in terms of x,y and z is used - typically kernel functions only depend on 
nearness in geographical space (x,y),  but in this case nearness in attribute space is also considered.  
A typical function may be: 
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where d1 is a geographical distance as before and d2 is the absolute difference in z values between a 
pair of points.  k1 and k2 are now both smoothing parameters - k1 functions as k does in a standard 
kernel smoother.  For the term involving d2 and k2, I is an indicator function. The effect is that 
standard kernel weighting occurs when two z-values are within d2 of one another,  otherwise no 
weighting occurs.  Thus if d2 is regarded as a significant enough difference to suggest a ‘cliff edge’ 
is between the points,  no smoothing occurs.  Since this method requires a z value at each location a 
two stage smoothing process is required as before. 
 
The Presentation 
In the proposed presentation these two smoothing methods will be introduced,  and then  illustrated 
with an example using Townsend scores of deprivation (Townsend et al 1988) in Leicestershire, 
UK. These identify some potential ‘faultlines’ - see fig. 2: 
 
 
 

 
Figure 2. Surface of Townsend Score for Leicestershire with faultline detection 

 
 
 
 



 

 

 
 

Figure 3. ‘Faultlines’ illustrated on a map of Leicestershire 
 

This is shown in a more familiar map-based form in fig. 3 (above) – the contour lines here mark the 
faultlines in the 3D plot in fig 2. 
 
Finally,  to assess the reliability of these ‘faultlines’ a bootstrap analysis is carried out to see 
whether they could have occurred as an artifact of the methodology even in a situation where no 
sudden changes in the surfaces exist in reality.  This will be shown in the presentation. 
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