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1. Introduction

Geographically weighted regression (Fotheringham et al., 2002) is a method of modelling
spatial variability in regression coefficients. The procedure yields a separate model for
each spatial location in the study area with all models generated from the same data set
using a differential weighting scheme. The weighting scheme, which allows for spatial
variation in the model parameters, involves a bandwidth parameter which is usually deter-
mined from the data using a cross-validation procedure. Part of the main output is a set
of location-specific parameter estimates and associated t statistics which can be used to
test hypotheses about individual model parameters. If there are n spatial locations and p
parameters in each model, there will be up to np hypotheses to be tested which in most
applications defines a very high order multiple inference problem. Solutions to problems
of this type usually involve an adjustment to the decision rule for individual tests designed
to contain the overall risk of mistaking chance variation for a genuine effect. An undesir-
able by-product of achieving this control is a reduction in statistical power for individual
tests, which may result in genuine effects going undetected. These two competing aspects
of multiple inference have become known as the multiplicity problem. In this paper we
develop a simple Bonferroni style adjustment for testing multiple hypotheses about GWR
model coefficients. The adjustment takes advantage of the intrinsic dependency between
local GWR models to contain the overall risk mentioned above, without the large sacrifice
in power associated with the traditional Bonferroni correction.

We illustrate this adjustment and a range of other corrective procedures on two data
sets. The first models the determinants of educational attainment in the counties of Georgia
USA. Using area based census data we examine the links between levels of educational
attainment and four potential predictors: the proportion of elderly, the proportion who are
foreign born, the proportion living below the poverty line and the proportion of ethnic



blacks. The second model is a geographically weighted hedonic house price model based
on individual mortgage records in Greater London in 1990. In both models we show how
the various corrections can be used to guide the interpretation of the spatial variations in
the parameter estimates. Finally we compare the statistical power of the proposed method
with Bonferroni/Sidak corrections and those based on false discovery rate control.

2. Controlling the family–wise error rate

The traditional approach to the multiplicity problem is to control the probability of a type
I error over a set (family) of m related hypothesis tests. The probability of rejecting one or
more true null hypotheses is called the family–wise error rate which we denote ξm and con-
trolling this quantity is a standard goal of most traditional multiple inference procedures.

If, in a set of m hypothesis tests, Ei is the event – “a type I errors occurs in the ith test”,
the family–wise error rate is given by

ξm = P

(
m⋃

i=1

Ei

)
≤

m

∑
i=1

P(Ei), (1)

where the last term follows from Boole’s inequality. If P(Ei) has the same value (say α)
for all tests, the Bonforroni (1935) correction follows from equation 1 since then ξm ≤ mα
and so setting α = ξm/m controls the family-wise error rate to be ξm or less. This result
does not require the tests to be independent however if they are independent, we can write

ξm = P

(
m⋃

i=1

Ei

)
= 1−P

(
m⋂

i=1

E i

)
= 1−

m

∏
i=1

P(E i) = 1−
m

∏
i=1

(1−P(Ei)).

Thus, for m independent tests with P(Ei) = α , the family–wise error rate is ξm = 1−
(1−α)m and the Šidák (1967) correction follows by choosing α = 1− (1−ξm)1/m which
controls the family–wise error rate at exactly ξm.

Both of the above approaches become very conservative when the number of hypothe-
ses to be tested is large and when the tests are not independent (Abdi, 2007). For dependent
tests Moyè (2003, p. 417–428) uses conditional probability and induction arguments to de-
rive the following generalisation of Šidák’s result,

ξm = 1− (1−α)
(
1−α

(
1−D2))m−1

, (2)

where the family–wise error rate now depends on D ∈ [0,1] which is called the degree of
dependency (assumed constant) across all tests. For a full discussion of the dependency
parameter see Moyè (2003, Ch. 5). If D = 1 we need only test any one of the hypotheses in
the set using the desired family–wise error rate, since then the decision for this hypothesis
completely determines the outcome of all remaining hypotheses in the set. If D = 0 the
hypotheses are independent and equation 2 reduces to the Šidák result.

Of course it still remains to choose a value for D and unfortunately there are few gen-
eral guidelines. Moyè (2003, pp. 188–190) discusses the issue in the context of multiple
endpoints in clinical trials and later in this paper we propose a method in the GWR context.
It appears that the choice of D will always depend on the context of the study and in some
cases the analyst will have no clear direction and more powerful alternatives such as the
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Figure 1: Plot of the per test α value against the dependency parameter D to achieve
a family-wise error rate of ξ100 = 0.05.

Holm–Bonferonni procedure (Holm, 1979) can be employed. If one is willing to redefine
the problem in terms of the false discovery rate (the expected fraction of incorrectly re-
jected hypotheses), the methods of Benjamini and Hochberg (1995) or, for dependent tests,
Benjamini and Yekutieli (2001) may be appropriate.

Applying the binomial theorem to equation 2 it is straight forward to show that

ξm ≤ α(1+(m−1)(1−D2))

a result that can also be established using Boole’s inequality as demonstrated by Moyè
(2003). Therefore, assuming we have a value for D, the family–wise error rate can be
controlled at ξm or less by choosing

α =
ξm

1+(m−1)(1−D2)
(3)

which is a Bonferroni style correction for dependent tests.
Moyè (2003, p. 188) warns against overestimation of D since then the family-wise error

rate will not be preserved. The importance of this advice is illustrated by the steepness of
the curve in fig. 1 for D > 0.95. In this region even a small overestimate of D can lead
to large overestimate of the per test α value resulting in the family-wise error rate being
considerably larger than required. With this in mind it would be prudent to adopt a value
of D at the lower end of its expected range.

3. Dependency in Geographically Weighted Regression

Since the calibration procedure in geographically weighted regression uses the same data
set to calibrate models at each spatial location, the method necessarily results in a certain



degree of dependency between the models, which must flow over to the t statistics and
associated hypothesis tests. A measure of this dependency can be calculated from the
GWR hat matrix S defined in Brunsdon et al. (1999). The effective number of parameters
is defined by pe = 2tr(S)− tr(S′S) where tr(·) is the matrix trace operator. Now suppose
that there are p parameters in each model to be calibrated and there are n spatial locations.
A sensible definition for the dependency between models is

D =
√

1− pe

np
, (4)

which is justified as follows. First consider the (admittedly impossible) case of complete
independence among the models for which pe = np giving D = 0. In the case of complete
dependence among the models (i.e. the global model is appropriate) we would have pe = p
giving D =

√
1−1/n which will be close to unity in most GWR applications since n is

usually large. Therefore equation 4 satisfies the requirement 0 ≤ D ≤ 1 and on substitut-
ing into equation 3, the family–wise error rate for testing hypotheses about GWR model
coefficients is controlled at ξm or less by selecting

α =
ξm

1+ pe− pe

np

. (5)

In most applications pe will be much less than the maximum number of parameters (np)
and so a significant gain in statistical power is expected when using this approach.

4. Summary

The main result in this paper equation 5, provides a very simple method of preserving the
family–wise error rate when testing multiple hypotheses about GWR model coefficients.
It avoids the large sacrifice of statistical power associated with the ordinary Bonferroni
correction by incorporating the intrinsic dependency between the local models into the
procedure. We note that the dependency parameter is a function of the effective number of
parameters which is calculated from the trace of the hat matrix which itself is a function
of the estimated bandwidth. Since the bandwidth is calculated from the data it is really a
random variable with an unknown distribution. Therefore D and consequently α are also
random variables with unknown distributions. If this distribution can be estimated (via
bootstrap or Monte–Carlo methods for example), confidence bounds could be developed
for D and α which would enhance the procedure and provide some protection against an
inflated family-wise error resulting from overestimating D. We leave this for future work.
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