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1. Introduction  
Over recent decades, research in the field of geocomputation has developed an arsenal of 
algorithms for geographic information processing and analysis. With few exceptions, 
these spatial algorithms almost universally assume that all the relevant geographic data 
are readily available to an algorithm (for example stored in one or more centralized 
spatial information system, like GIS or spatial database, accessible to the algorithm either 
directly or via a digital communication network). By contrast, this paper examines the 
design of decentralized spatial algorithms, where multiple spatial information systems 
each with only partial knowledge of the relevant geographic data, must collaboratively 
process data to generate the required answer.  

Research into decentralized spatial algorithms is motivated by the development of new 
technologies, in particular geosensor networks (GSN). A geosensor network is type of 
wireless sensor network (wireless network of miniaturized sensor-enabled computers, 
called nodes) that monitors geographical phenomena in the environment (Nittel et al. 
2004, Zhao and Guibas, 2004). Each node in a geosensor network can sense information 
about its immediate geographic environment (including parameters like temperature, 
light, CO2, humidity, soil moisture, etc.); and communicate with other nodes in close 
spatial proximity. However, geosensor networks are uniquely resource-constrained 
information systems, particularly with respect to energy resources. As a result, GSN have 
limited energy resources for communication (the most energy-intensive operation for a 
node). Limited communication resources make it highly inefficient to communicate raw 
data from a GSN to a centralized silo for processing. Instead, efficient algorithms require 
geographic data be processed in the network, relying on collaborative computation 
between nearby nodes with no centralized control.  

Unfortunately, designing decentralized algorithms is notoriously difficult, even more 
so in the case of GSN where the environment and node locations, may both vary spatially 
and temporally. The key challenge facing any decentralized spatial algorithm is how to 
reliably achieve the desired global spatial behavior through the specification of local 
node behaviors (cf. Estrin et al., 2000). In this context, this paper sets out a new approach 
to designing decentralized spatial algorithms suitable for operation in GSN. The approach 
draws upon established tools and techniques for (decentralized) algorithm design, but 
extends and adapts them for use in a spatiotemporal context.  



2. Algorithm design process 
The decentralized algorithm design process proposed in this paper iterates over two 
distinct phases. First, the specification phase sets out in a structured way the 
computational procedure and interactions each individual system component will engage 
in. The specification stage is founded on a technique developed by Santoro (2007), but is 
extended with (quantitative and qualitative) representations of the spatial location of 
nodes; and representations of the spatiotemporal changes both in the geographic 
environment and the locations of nodes. Second, the analysis phase critically examines 
the specification, identifying problems and limitations, faults and weaknesses. Depending 
on the results of the analysis, the process then iterates until no further changes are 
needed, and the algorithm adequately solves the problem.  

2.1 Specification 
The decentralized spatial algorithm specification technique used is founded on four key 
structures  

1. restrictions on the environment in which the algorithm operates, including: 
o non-spatial restrictions on what data can be sensed by nodes;  
o spatial restrictions on what information a node is assumed to be able to 

sense about their absolute and/or relative location;  
o temporal restrictions on whether nodes are assumed to be static or move 

over time, and whether sensed data changes over time;  
o uncertainty restrictions on how reliable communication, sensing, 

positioning, and computation are assumed to be; and  
o network restrictions on the structure of the communication network (e.g., 

whether the network is planar or non-planar, any other network 
connectivity or topology restrictions that may exist). 

2. events that occur to nodes, such as the receipt of a messages from a neighbor, 
comprising: 

o receipt of a message, sent by a neighboring node;  
o a triggered event, such as a scheduled alarm or periodic sensor reading; or 
o a spontaneous impulse, external to the system. 

3. actions that a node can perform in response to the different events that occur. 
Actions must be atomic sequences of operations that cannot be interrupted by 
other events.  

4. states for a node, which allow nodes to retain knowledge of previous interactions. 
 
An example of a simple decentralized algorithm for locally detecting the boundary of 

a region is shown in figure 1. In the example algorithm, each node communicates its 
current sensed value (in this simplified case, 1 or 0) to its immediate one-hop neighbors. 
Any node that is both inside the region (senses 1) and has a one-hop neighbor that is 
outside the region (senses 0) can locally decide it is at the boundary, without requiring 
any centralized control. While extremely simple, boundary detection is an important 
component of more sophisticated algorithms, such as area computation, and topological 
relationships between regions.  
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Figure 1. Example decentralized boundary algorithm. 

2.2 Analysis 
The analysis phase comprises three distinct components:  

• An adversarial analysis, where the designer adopts the role of an adversary, 
whose objective is to find as many scenarios as possible where the algorithm fails 
in some way, including generating incorrect results, executing inefficiently, or 
failing to terminate.  

• A computational analysis, which aims to determine the communication 
complexity both for the algorithm overall, and for individual nodes across 
network.  

• An execution analysis, which aims to explore the emergent, dynamic properties of 
the algorithm, through the interactions between individual nodes, for example 
using sequence diagrams.  

 
In the adversarial analysis, the designer probes the limitations of the algorithm, for 

example by introducing uncertainty into the sensed values, or examining the effects of 
unreliable communication between nodes. In the computational analysis, the examination 
focuses on the communication resources required by the algorithm. For example, the 
algorithm in figure 1 has an overall linear communication complexity O(n) (in total n 
messages are sent, where n is the size of the network), but a constant time load balance 
O(1) (each node sends exactly one message). Such analyses allow direct comparison of 
the computational resource requirements different algorithms. In the execution analysis, 
the designer investigates the dynamic behavior of the algorithm. For example, figure 2 
shows a sequence diagram for a 1D arrangement of nodes (the limitations of graphic 
depiction on flat paper restrict sequence diagrams to 1D spatial arrangements), showing 
the events and state changes resulting from the boundary algorithm in figure 1.  
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Figure 2. Example sequence diagram for seven nodes operating boundary algorithm in 
figure 1, where s={(v1,0), (v2,0), (v3,0), (v4,1), (v5,1), (v6,1), (v7,0),} (i.e., where v3, v4, v5 

are inside region). 
 

3. Example design   
The full paper explores the efficacy of the decentralized algorithm design process through 
the development of a sophisticated decentralized algorithm. The algorithm, shown in 
figure 3, is capable of determining the topology of a complex areal object, potentially 
comprising multiple sub-regions, islands, and holes (after a model by Worboys and 
Bofakos, 1993). The example demonstrates the utility of the approach in designing highly 
complex decentralized algorithms. In the light of these experiences, the conclusions of 
the full paper look forward more broadly at the increased role for decentralized spatial 
computing in the near future as technologies like GSN become more mature.  



 
Figure 3. Decentralized algorithm for computing the topology of a complex areal region, 

with islands and holes (detailed explanation in full paper). 
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