
Designing decentralized spatial algorithms for
geosensor networks

M. Duckham1, D. Nussbaum2, J-R. Sack2, N.Santoro2

1Department of Geomatics, University of Melbourne, Victoria 3010, Australia

Telephone: +61 3 8344 63935
Fax: +61 3 9347 2916

Email: mduckham@unimelb.edu.au

2Department of Computer Science, Carleton University, Ottawa K1S 5B6, Canada

1. Introduction
Over recent decades, research in the field of geocomputation has developed an arsenal of
algorithms for geographic information processing and analysis. With few exceptions,
these spatial algorithms almost universally assume that all the relevant geographic data
are readily available to an algorithm (for example stored in one or more centralized
spatial information system, like GIS or spatial database, accessible to the algorithm either
directly or via a digital communication network). By contrast, this paper examines the
design of decentralized spatial algorithms, where multiple spatial information systems
each with only partial knowledge of the relevant geographic data, must collaboratively
process data to generate the required answer.

Research into decentralized spatial algorithms is motivated by the development of new
technologies, in particular geosensor networks (GSN). A geosensor network is type of
wireless sensor network (wireless network of miniaturized sensor-enabled computers,
called nodes) that monitors geographical phenomena in the environment (Nittel et al.
2004, Zhao and Guibas, 2004). Each node in a geosensor network can sense information
about its immediate geographic environment (including parameters like temperature,
light, CO2, humidity, soil moisture, etc.); and communicate with other nodes in close
spatial proximity. However, geosensor networks are uniquely resource-constrained
information systems, particularly with respect to energy resources. As a result, GSN have
limited energy resources for communication (the most energy-intensive operation for a
node). Limited communication resources make it highly inefficient to communicate raw
data from a GSN to a centralized silo for processing. Instead, efficient algorithms require
geographic data be processed in the network, relying on collaborative computation
between nearby nodes with no centralized control.

Unfortunately, designing decentralized algorithms is notoriously difficult, even more
so in the case of GSN where the environment and node locations, may both vary spatially
and temporally. The key challenge facing any decentralized spatial algorithm is how to
reliably achieve the desired global spatial behavior through the specification of local
node behaviors (cf. Estrin et al., 2000). In this context, this paper sets out a new approach
to designing decentralized spatial algorithms suitable for operation in GSN. The approach
draws upon established tools and techniques for (decentralized) algorithm design, but
extends and adapts them for use in a spatiotemporal context.

2. Algorithm design process
The decentralized algorithm design process proposed in this paper iterates over two
distinct phases. First, the specification phase sets out in a structured way the
computational procedure and interactions each individual system component will engage
in. The specification stage is founded on a technique developed by Santoro (2007), but is
extended with (quantitative and qualitative) representations of the spatial location of
nodes; and representations of the spatiotemporal changes both in the geographic
environment and the locations of nodes. Second, the analysis phase critically examines
the specification, identifying problems and limitations, faults and weaknesses. Depending
on the results of the analysis, the process then iterates until no further changes are
needed, and the algorithm adequately solves the problem.

2.1 Specification
The decentralized spatial algorithm specification technique used is founded on four key
structures

1. restrictions on the environment in which the algorithm operates, including:
o non-spatial restrictions on what data can be sensed by nodes;
o spatial restrictions on what information a node is assumed to be able to

sense about their absolute and/or relative location;
o temporal restrictions on whether nodes are assumed to be static or move

over time, and whether sensed data changes over time;
o uncertainty restrictions on how reliable communication, sensing,

positioning, and computation are assumed to be; and
o network restrictions on the structure of the communication network (e.g.,

whether the network is planar or non-planar, any other network
connectivity or topology restrictions that may exist).

2. events that occur to nodes, such as the receipt of a messages from a neighbor,
comprising:

o receipt of a message, sent by a neighboring node;
o a triggered event, such as a scheduled alarm or periodic sensor reading; or
o a spontaneous impulse, external to the system.

3. actions that a node can perform in response to the different events that occur.
Actions must be atomic sequences of operations that cannot be interrupted by
other events.

4. states for a node, which allow nodes to retain knowledge of previous interactions.

An example of a simple decentralized algorithm for locally detecting the boundary of

a region is shown in figure 1. In the example algorithm, each node communicates its
current sensed value (in this simplified case, 1 or 0) to its immediate one-hop neighbors.
Any node that is both inside the region (senses 1) and has a one-hop neighbor that is
outside the region (senses 0) can locally decide it is at the boundary, without requiring
any centralized control. While extremely simple, boundary detection is an important
component of more sophisticated algorithms, such as area computation, and topological
relationships between regions.

Restrictions

States

Events

Actions

{

{

Figure 1. Example decentralized boundary algorithm.

2.2 Analysis
The analysis phase comprises three distinct components:

• An adversarial analysis, where the designer adopts the role of an adversary,
whose objective is to find as many scenarios as possible where the algorithm fails
in some way, including generating incorrect results, executing inefficiently, or
failing to terminate.

• A computational analysis, which aims to determine the communication
complexity both for the algorithm overall, and for individual nodes across
network.

• An execution analysis, which aims to explore the emergent, dynamic properties of
the algorithm, through the interactions between individual nodes, for example
using sequence diagrams.

In the adversarial analysis, the designer probes the limitations of the algorithm, for

example by introducing uncertainty into the sensed values, or examining the effects of
unreliable communication between nodes. In the computational analysis, the examination
focuses on the communication resources required by the algorithm. For example, the
algorithm in figure 1 has an overall linear communication complexity O(n) (in total n
messages are sent, where n is the size of the network), but a constant time load balance
O(1) (each node sends exactly one message). Such analyses allow direct comparison of
the computational resource requirements different algorithms. In the execution analysis,
the designer investigates the dynamic behavior of the algorithm. For example, figure 2
shows a sequence diagram for a 1D arrangement of nodes (the limitations of graphic
depiction on flat paper restrict sequence diagrams to 1D spatial arrangements), showing
the events and state changes resulting from the boundary algorithm in figure 1.

v2 v3 v4 v6

INIT

Spontan-
eously

(,1)msge

v1 v5

(,1)msge

IDLE

INIT INITINITINITINIT

Spontan-
eously

Spontan-
eously

Spontan-
eously

Spontan-
eously

Spontan-
eously

(,0)msge (,0)msge

(,1)msge (,1)msge

IDLE

(,1)msge (,1)msge

(,0)msge

(,0)msge

IDLEIDLE IDLE IDLE

BNDY BNDY

Figure 2. Example sequence diagram for seven nodes operating boundary algorithm in
figure 1, where s={(v1,0), (v2,0), (v3,0), (v4,1), (v5,1), (v6,1), (v7,0),} (i.e., where v3, v4, v5

are inside region).

3. Example design
The full paper explores the efficacy of the decentralized algorithm design process through
the development of a sophisticated decentralized algorithm. The algorithm, shown in
figure 3, is capable of determining the topology of a complex areal object, potentially
comprising multiple sub-regions, islands, and holes (after a model by Worboys and
Bofakos, 1993). The example demonstrates the utility of the approach in designing highly
complex decentralized algorithms. In the light of these experiences, the conclusions of
the full paper look forward more broadly at the increased role for decentralized spatial
computing in the near future as technologies like GSN become more mature.

Figure 3. Decentralized algorithm for computing the topology of a complex areal region,

with islands and holes (detailed explanation in full paper).

4. References
Estrin, D., Govindan, R., and Heidemann, J. 2000. Embedding the Internet: Introduction. Communications

of the ACM, 43(5): 38–41.
Nittel, S., Stefanidis, A., Cruz, I., Egenhofer, M., Goldin, D., Howard, A., Labrinidis, A., Madden, S.,

Voisard, A., and Worboys, M., 2004. Report from the First Workshop on Geo Sensor Networks,
ACM SIGMOD Record, 33(1).

N. Santoro, 2007. Design and Analysis of Distributed Algorithms. New Jersey: Wiley.
Worboys, M. F. and Bofakos, P., 1993. A canonical model for a class of areal spatial objects. In Proc.

Third International Symposium on Advances in Spatial Databases (SSD’93). Berlin: Springer, 36–
52.

Zhao, Z. and Guibas, L. J., 2004. Wireless Sensor Networks—An Information Processing Approach. San
Francisco, CA: Morgan Kaufmann Publishers.

