
 1

Predictive Modelling of Seabed Sediment Parameters 
Using Multibeam Acoustic Data: A Case Study on the 

Carnarvon Shelf, Western Australia 
 

Z. Huang1, S. Nichol2, J. Daniell3, J. Siwabessy4, B. Brooke5 

 
1Geoscience Australia, GPO Box 378, Canberra ACT 2601, Australia 

Telephone: +61 2 62495876 
Fax: +61 62499920 

Email: Zhi.Huang@ga.gov.au 
 

2Geoscience Australia, GPO Box 378, Canberra ACT 2601, Australia 
Telephone: +61 2 62499346 

Fax: +61 62499920 
Email: Scott.Nichol@ga.gov.au 

 
3Geoscience Australia, GPO Box 378, Canberra ACT 2601, Australia 

Telephone: +61 2 62499691 
Fax: +61 62499920 

Email: James.Daniell@ga.gov.au 
 

4Geoscience Australia, GPO Box 378, Canberra ACT 2601, Australia 
Telephone: +61 2 62499514 

Fax: +61 62499920 
Email: Justy.Siwabessy@ga.gov.au 

 
5Geoscience Australia, GPO Box 378, Canberra ACT 2601, Australia 

Telephone: +61 2 62499434 
Fax: +61 62499920 

Email: Brendan.Brooke@ga.gov.au 
 

1. Introduction  
Previous studies have shown that seabed sediment parameters such as %Mud, %Sand, 
and %Gravel are useful surrogates for predicting the distribution of benthic species (e.g., 
Beaman and Harris 2007; Degraer et al. 2008). Typically, these parameters are derived 
from a limited number of widely distributed sediment grab samples. To improve 
predictions from these point data, continuous layers of these parameters are needed.  

Apart from often used geostatistic techniques, predictive modelling techniques can be 
used for large area mapping. In particular, machine learning models offer most potential 
because they are able to handle both linear and non-linear relationships.  

Multibeam data with high resolution coverage is now routinely collected in marine 
surveys. From multibeam bathymetry we can derive a range of terrain and morphometric 
variables that have known relationships with sediment distribution patterns. Multibeam 
backscatter intensity depends on both acoustic impedance contrast and the roughness of 
the seafloor, which are seabed habitat dependent. Various first and second order texture 
measures derived from backscatter data may be useful in predicting sediment. Variables 
that measure spatial autocorrelation are also considered to be useful.  

This paper reports the results of predictive spatial modeling of two seabed sediment 
parameters: %Mud and %Sand for a 700 km2 area of the Carnarvon Shelf, Western 
Australia. Multiple machine learning models were applied to create prediction maps and 
prediction uncertainty maps.  
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2. Materials and Methods  
In August and September 2008 the CERF Marine Biodiversity Hub 
(http://www.marinehub.org/index.php/site/home) conducted a marine survey of three 
strategically selected study areas on the southern Carnarvon Shelf, Western Australia 
(Brooke et al. 2009). The sediment samples were collected using a standard seabed grab 
sampler in a water depth up to 100 metres. Summary statistics for the two sediment 
parameters are listed in Table 1. 

Variable Mean STD Min Max 
%Mud 3.46 7.03 0.00 34.82 
%Sand 80.17 21.27 3.17 100.00

Table 1. Properties of %Mud and %Sand 
 
The multibeam data were collected using a Simrad EM 3002D 300 kHz sonar system 

operated in a single head configuration. The high quality bathymetry and backscatter 
datasets were gridded at 3 metre and 5 metre resolutions, respectively. A range of 
secondary variables at multiple scales were derived from the two variables (Tables 2 & 
3).  

 
Variable Description Scales 
Bathymetry Seabed water depth Not Applicable 
Slope Slope gradient  9 m, 15 m, 33 m, 

93 m  
Relief Topographic relief 9 m, 15 m, 33 m, 

93 m 
Surface Area “true” surface area, an indicator of surface 

rugosity 
9 m, 15 m, 33 m, 
93 m 

TPI Topographic Position Index (Weiss, 2001) 9 m, 15 m, 33 m, 
93 m 

Planar Curvature The curvature of the surface perpendicular to 
the slope direction 

9 m, 15 m, 33 m, 
93 m 

Profile Curvature The curvature of the surface in the direction 
of slope 

9 m, 15 m, 33 m, 
93 m 

Fuzzy Morphometric 
Features 

Peakness, Pitness, Passness, Ridgeness, 
Channelness, and Planarness (Wood, 1996)  

93 m 

Local Moran I  An indicator of spatial autocorrelation 9 m, 15 m, 33 m, 
93 m 

Table 2. Variables derived from Bathymetry 
 
 

Variable Description Scales 
Backscatter Seabed backscatter intensity Not 

Applicable 
Local Moran I  An indicator of spatial autocorrelation 15 m, 35 m, 
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95 m 
Homogeneity GLCM Homogeneity (Haralick et al. 1973); Four 

directions (North, East, North-East, and South-East) 
15 m, 35 m, 
95 m 

Variance GLCM Variance (Haralick et al. 1973); One direction 
(North-East) 

15 m, 35 m, 
95 m 

Table 3. Variables derived from Backscatter 
 

The three predictive models used to simulate the non-linear sediment-environment 
relationships are Boosted Decision Tree (BDT) (Friedman 1999), Support Vector 
Machine (SVM) (Cortes and Vapnik 1995), and General Regression Neural Network 
(GRNN) (Specht 1990). The models’ performance was evaluated against a separated test 
set (78 out of 259 samples) using three statistics. They include R2 (proportion of variance 
explained by model), Root Mean Squared Error (RMSE), and Mean Absolute Error 
(MAE).  To investigate the sensitivity of model performance to the number of 
explanatory variables, the secondary variables were added to the models one at a time 
until the best performance was reached.  
 

3. Results and Discussion  
The models’ performance for predicting %Mud is good with over 70% of variance 
explained and low RMSE and MAE values (Table 4).  The models did not perform as 
well for predicting %Sand, with 50% of the variance explained (Table 4). However, the 
RMSE and MAE values for %Sand are less than one STD, which indicates a satisfactory 
performance.  
 

%Mud R2 RMSE MAE %Sand R2 RMSE MAE 
BDT 0.70 4.04 2.50 BDT 0.49 16.45 11.72 
SVM 0.77 3.56 2.00 SVM 0.44 16.87 11.24 
GRNN 0.72 3.91 1.95 GRNN 0.48 16.60 11.28 

Table 4. Models’ Statistical Performance 
 
When training models for %Mud, we discovered that BDT and SVM need only one 

secondary variable: Local Moran I for Bathymetry to obtain the best performance. GRNN 
used secondary variables of Homogeneity, Local Moran I for Backscatter, Variance, and 
Planar Curvature to reach the best performance. For %Sand, the best performing model, 
BDT, did not use Slope, Surface Area, TPI and Homogeneity in East direction. The best 
performing SVM model used the secondary variables of Homogeneity in South-East 
direction, Slope, Variance, Local Moran I for Bathymetry, Surface Area, Homogeneity in 
North direction, and Relief. Three secondary variables including Local Moran I for 
Bathymetry, Local Moran I for Backscatter, and Homogeneity in South-East direction 
were used to obtain the best performing GRNN. The findings indicate the importance of 
spatial autocorrelation in mapping seabed sediment parameters. 

As an example, Figures 1 and 2 display the prediction maps for Point Cloates, which 
show similar spatial patterns among the three models for both sediment parameters. 
Percentage mud generally increases with water depth (Figure 1A-C). Figure 1D indicates 
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higher uncertainty in areas with high %Mud. The average error for %Mud prediction is 
1.5% with less than 4% of the survey area having a standard deviation error greater than 
7%. The opposite spatial distribution patterns were observed for the predictions of %Sand 
(Figure 2A-C). The average error for %Sand prediction is 4.6% with only 1% of the area 
having a standard deviation error greater than 21% (Figure 2D). The general patterns for 
the two sediment parameters are consistent with our knowledge of the survey areas, based 
on physical samples and underwater video. 

 

 
Figure 1: Predicted %Mud distribution for the Point Cloates area; A) GRNN model, B) 

BDT model, C) SVM model, D) Standard Deviation Error 
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Figure 2: Predicted %Sand distribution for the Point Cloates area; A) GRNN model, B) 

BDT model, C) SVM model, D) Standard Deviation Error 

 

4. Conclusion 
Robust models of the spatial distribution of physical parameters are essential for testing 
their utility as surrogates of patterns of seabed biodiversity. The sediment prediction 
maps will be incorporated into the analysis of co-variance of physical and biological data 
for this area. The results will provide a test of the degree to which these parameters are 
able to explain observed biodiversity patterns in this area. 
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