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1. Introduction 
Three dimensional (3D) geological models are commonly used in the petroleum, mining 
and groundwater sectors for examining structural relationships, volumes and the 
distribution of properties. These models are built from irregularly spaced data that define 
fault surfaces or the top, bottom and sides of structural units (formations, period 
boundaries etc.). Geological data can be collated as lists, making these data amenable to 
manipulation using functional programming algorithms. Scripts written in functional 
languages are concise and resemble more closely traditional mathematical notation 
(Goldberg 1996, Hudak 1989). When the functional programming style is used in a 
symbolic mathematical program with 3D graphics short scripts can be written for 
constructing 3D geological models. 

When teaching the fundamentals of 3D geological model construction symbolic 
mathematical programs allow students with little or no programming experience to learn 
how to sort the data, interpolate/extrapolate surfaces over the domain, and build 3D 
geological models using a set of logical expressions that dictate how the surfaces intersect 
to represent geological units. Exposing the students to the mathematics and scripting steps 
provides insights into the exactness and limitations of the models and introduces them to 
an open ended modelling environment. 

Two algorithms are presented. The first script projects point measurements (x, y, z, 
inclination, azimuth) from field or map data along an inclined line to extend the data to 
form a series of points that define a surface which can subsequently be gridded. The 
second script performs inverse distance gridding (Yamamoto 1998). These scripts are 
written using the symbolic programming and visualisation software Mathematica 
(Wolfram Research, Inc., 2008), which is probably the most widely used functional 
programming language (Hinsen 2009). 

The application of the algorithms is demonstrated by constructing a 3D geological 
structural model of the Maules Creek catchment in NSW, Australia. The data sets consist 
of a digital elevation model (DEM) (fig. 1), borehole bedrock picks (fig. 1), period 
geological boundaries digitised from the 1:250000 geological map (the top of the Permian, 
and Triassic (fig. 2)), and the digitised limit of the Tertiary basalt (fig. 2). Inclination and 
azimuth details were inferred from the geological map. Elevations were assigned to the 
digitised map values by defining an approximate function for the DEM (using the 
Mathematica function Interpolation) and then applying this function to the list of 
points. This process is described in more detail below. 
 



 
Figure 1. The DEM sorted into the outcropping rock and alluvium (left) and the combined 
DEM rock data and borehole bedrock picks (right). 
 
 

 
Figure 2. The geological map of Maules Creek (left) and the digitised data in 3D (right). 

2. Transforming Lists 
Mathematica treats everything as an expression. The list {1,2,3} is an expression with a 
head List and three elements. This could be written List[1,2,3]. Operations can be 
performed on any expression. There are two functional programming functions that are 
commonly used: Apply and Map. To sum the elements of the list above the notation 
Apply[Plus,{1,2,3}] is used. This returns the value 6. A delayed function can be 
defined f[x_]:= x^2. This function can then be applied separately to each element in 
the list by mapping the function onto the list, Map[f,{1,2,3}], which returns the new 
list {1,4,9}. These are the fundamental processes applied in the scripts below. 

3. Projection of Field and Map Data 
Starting at the measurement point (x0,y0,z0) the n-th point (xn,yn,zn) projected along the 
linear line in the down dip direction is defined by: 
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where s is the size of the interval between each point (de Kemp 1998, Bistacchi et al. 2008, 
Zanchi et al. 2009). A set of points is projected both up and down dip from the field or 
digitised data using the new function GeoPointProjectLine (Section 9). The results of 
applying GeoPointProjectLine to the structural top data in fig. 2 are shown in fig. 3. 

 
Figure 3. Projected structural top surface data.  

4.  Describing Surfaces Using Approximate Functions 
Haneberg (2004) published a Mathematica script for inverse distance gridding, but it is 
slower than the algorithm InverseDistanceGrid2D presented in Section 9. The new 
function InverseDistanceGrid2D takes advantage of the function Nearest and uses 
no Do loops for faster calculation times. The grid node values Zx,y are estimated via: 
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where di is the Euclidian distance between the node and the i-th data point, N is the number 
of neighbouring points, and p is the power of distance. Within the 
InverseDistanceGrid2D module the data are interpolated/extrapolated onto a 
rectangular grid and then the function Interpolation is applied to the grid list to define 
an approximate function at all locations over the domain. The results of applying 
InverseDistanceGrid2D to the surface data sets are shown in fig. 4. 

 
Figure 4. Surfaces calculated by applying InverseDistanceGrid2D to the data in fig. 3. 



5. Building the 3D Structural Model 
Once each surface has been defined by an approximate function the volume that represents 
each geological unit is plotted using the function RegionPlot3D. This function plots a 
region in the domain where the predicate is True. The predicate is defined using a sequence 
of relational and logical operators to delineate the region of interest. For example to define 
the Jurassic region the following predicate is used: 
 

z > fTriassic[x,y] && z < fRock[x,y] && z < fMookiThrust[x,y] 
 
where fTriassic, fRock and fMookiThrust are the approximate functions that define 
the top of the Triassic, the eroded rock surface (DEM + borehole rock picks) and the fault 
surface that defines the Mooki Thrust. This procedure is applied to each geological unit of 
interest and then the units are combined into a single image shown in fig. 5. 
 

 
Figure 5. 3D geological structural model of the Maules Creek catchment. The geological 
periods are Carboniferous (cream), Permian (blue), Triassic (green), Jurassic (pink), 
Tertiary basalt (red), and Quaternary alluvium (yellow).  
 
 
6. Conclusion 
Symbolic programs like Mathematica provide a simple method to demonstrate data 
manipulation, interpolation and geological unit representation. By honouring the functional 
programming paradigm catchment scale 3D geological models can be constructed using 
short scripts that can be easily interpreted by students with limited programming 
experience. The models rigorously honour the data, can be used to determine the 
thicknesses and volumes of the regions of interest, and provide the conceptual framework 
for further investigations.  
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9. Functions 
 
9.1 Projection of Field and Map Point Data 
 
GeoPointProjectLine converts a point measurement list consisting of the elements 
{x,y,z,inclination,azimuth} into an extended list of points projected up and down dip. The 
values of stepin and countin are set to provide an adequate number of additional data over 
the domain. 
 
GeoPointProjectLine[geodatain_, stepin_, countin_]:=    
 Module[{step,projectDown,projectUp,projectionTable}, 
   projectDown = Flatten[N[Table[{ 
       geodatain[[i,2]]+(Cos[geodatain[[i,5]]°]*Sin[geodatain[[i,6]]°]) stepin n, 
       geodatain[[i,3]]+(Cos[geodatain[[i,5]]°]*Cos[geodatain[[i,6]]°]) stepin n, 
       geodatain[[i,4]]-Sin[geodatain[[i,5]]°] stepin n}, 
        {i,Length[geodatain]},{n,0,countin}]],1]; 
   projectUp = Flatten[N[Table[{ 
       geodatain[[i,2]]-(Cos[geodatain[[i,5]]°]*Sin[geodatain[[i,6]]°]) stepin n, 
       geodatain[[i,3]]-(Cos[geodatain[[i,5]]°]*Cos[geodatain[[i,6]]°]) stepin n, 
       geodatain[[i,4]]+Sin[geodatain[[i,5]]°] stepin n}, 
        {i,Length[geodatain]},{n,0,countin}]],1]; 
   projectionTable = Join[projectUp,projectDown]; 
   Return[projectionTable]] 
 
Usage: 
 
step = 2000; count = 25; 
dataout = GeoPointProjectLine[data,step,count] 
 

 
9.2 Inverse Distance Gridding 
 
InverseDistanceGrid2D interpolates irregularly spaced data {{x1,y1,z1},{x2,y2,z2},…} 
that define the surface onto a rectangular grid {{x1,y1},{x2,y2,},…} and then calculates an 
approximate function for the surface. The approximate function defines the z estimate over 
the domain of interest. The domain is defined by the dimensions of the input grid. 
 



InverseDistanceGrid2D[datain_,k_,p_,gridin_]:= 
 Module[{nfunction,nset,xyz,xy,z,d,zestimate,zgrid,zfunction}, 
   nfunction=Nearest[datain[[All,{1,2}]] datain[[All]]]; 
   nset[{x_,y_}]:= nfunction[{x,y},k]; 
   xyz=Map[nset,gridin]; 
   xy=xyz[[All,All,{1,2}]]; 
   z=xyz[[All,All,3]]; 
 d=Table[EuclideanDistance[gridin[[i]],xy[[i,j]]], 
  {i,Length[gridin]},{j,Length[xy[[1]]]}]; 
   zestimate=Apply[Plus,z/d^p,1]/Apply[Plus,1/d^p,1]; 
   zgrid=Table[{gridin[[i,1]],gridin[[i,2]],zestimate[[i]]}, 
  {i,Length[gridin]}]; 
   zfunction=Interpolation[zgrid,Method "Hermite",InterpolationOrder 3];  
   Return[zfunction]] 
 
Usage: 
 
ksearch = 3; power = 2; 
grid2D = Flatten[Table[{x,y},{x,xmin,xmax,xspace},{y,ymin,ymax,yspace}],1]; 
surfacefunction = InverseDistanceGrid2D[sparsedata,ksearch,power,grid2D] 
 

Above sparsedata is the irregularly spaced data that defines the surface, ksearch is the 
number of nearest neighbour points to use to estimate the grid node value z, power is the 
power of distance (1, 2, 3, …), and grid2D is the rectangular grid list {{x1,y1},{x2,y2,},…}. 
 
  


