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1. Introduction

The interaction between dispersal processes and the spatial structure of landscapes is key
to understanding the risks associated with the spread of invasive organisms. The critical
question in dispersal ecology is how to explain the fact that organisms spread much more
rapidly than classical models predict (Skellam 1951, Clark et al. 1998). The question is
often addressed using mathematical and simulation approaches (see, e.g., Kot et al.
2004). In these contexts, the spatial extent of models is usually limited to individual
organisms modelled at fine grains (e.g. less than 10 m).

Management-oriented models force us to consider a wider range of scales, from
individual organisms (10 metre) to landscapes and regions (up to 10° metres) and require
development of novel computational approaches to dispersal. Dispersal of propagules
may depend on micro-turbulence or on decisions made by foraging animals, and are fine-
grained in space and time (Nathan 2006). However, such mechanisms may resolve
themselves on landscapes of hundreds, or even thousands of kilometres extent (Perry and
Enright 2006). An obvious approach is individual-based models that represent individual
organisms, along with the detail of their fine-grained behaviours. Recent simulations of
forest succession may have as many as 10° individual trees (Chave 1999, Govindarajan et
al. 2007). That such models are restricted to spatial extents of only around 100km? points
to the challenges facing this approach, even with rapid developments in high-
performance computing. In any case, analysis of such models is likely to be conducted
only after data reduction, so that many painstakingly included details—especially the
spatial details!—are lost when they are applied to ecosystem management.

2. Modelling dispersal more efficiently

The central difficulty of modelling dispersal processes from a management perspective is
that most dispersal events occur over very short distances (up to perhaps 10 metres or so),
but rates of spread are governed by rare long distance dispersal (LDD) events at distances
two or more orders of magnitude greater (Nathan 2006).

In figure 1, a random walk of 1000 steps, with each step length drawn from an
exponential probability distribution with mean length of A=0.1 is shown. Over 1000
time-steps, the walk advances less than one whole grid square (from the red to the blue
dot). Relative to the imposed grid, the walk may spend long periods oscillating back and
forward between two cells along an edge. Thus, when the scope of the study requires a
grid cell resolution on the order of 100’s of metres (both because of the data available



and/or the extent being considered), but local dispersal occurs on the order of a few
metres, substantial difficulties arise.

Two approaches are typically taken. One is to represent every individual in the
population explicitly, but this becomes unwieldy when applied to real world problems, as
we have seen. The alternative is to represent only total population or biomass in each
grid cell. However, standard implementations of this approach may only crudely
approximate the details of the dispersal process, typically applying simple rules of
probabilistic contagious spread to adjacent cells (Birch 2006).

Figure 1. The scaling problem associated with dispersal.

Our approach conceptualises the presence of an organism in a grid cell as being in one
of two ‘phases’ either the core or buffer phase. In the core phase, the probability of cell
exit is determined by drawing a dispersal distance d from a probability distribution (or
dispersal kernel) describing the process of interest (see for example Clark et al. 1998). A
typical dispersal kernel might be an exponential distribution with mean A = 0.05 where
distances are expressed relative to grid cell resolution. Large values of d result in
movement to a remote grid cell by applying simple geometry. For d <1, Buffon’s needle
result (Birch 2006, Shortridge and Goodchild 2002) is applied to determine the
probability of exit to an orthogonal grid cell. The standard Buffon’s needle probability
results are scaled to account for additional cell-to-cell movements caused by the buffer
phase mechanism described below, as detailed in O’Sullivan and Perry (2009). A
uniform random number draw in the range 0 to 1 then determines whether cell exit
actually occurs.

When exit to an adjacent cell occurs, the organism enters the adjacent cell in the buffer
phase and movement is handled differently. Each time-step the organism stays in the
buffer phase with probability s. An organism determined as not staying moves back to
the grid cell from which it originally arrived in the cell, remaining in the buffer phase,
with probability b. Finally, an organism which is neither staying in, nor returning to its
original cell, moves forward into the core phase in its new grid cell. This mechanism is a
Markov chain governing movement from grid cell to grid cell (figure 2).
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Figure 2. Schematic illustration of movement across a cell boundary (the dashed line)
showing core and buffer phases, and associated probabilities.

O’Sullivan and Perry (2009) show that this mechanism can be tuned by appropriate
choice of s and b to match dispersal rates associated with continuous-space random walks
on the same gridded landscape. This is true even for dispersal kernels with mean
distances that are short (down to ~0.01) relative to the grid resolution.

3. Population-level dispersal and the complete model

The model described above represents an individual random walk across a gridded
landscape. Up-scaling the approach to a population level is illustrated in figure 3.
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Figure 3. The structure for up-scaling the dispersal mechanism to the grid-level.

Each grid cell holds five ‘containers’ for each population, one core phase, and four
‘in-bound’ buffer phase containers. At each time-step a grid-cell’s population is the sum
of its five containers. Movement from core containers to buffers in adjacent cells is
governed by drawing dispersal distances from an appropriate dispersal kernel.
Movement in the buffer phases is stochastic. For example, if there are N occupants of a
particular buffer phase container, a binomial distribution with probability s determines
how many stay. Of those leaving, a binomial process determines how many move back



to the neighbouring cell buffer phase, and how many move forward to the current grid
cell core.

This mechanism has been implemented using NetLogo (Wilensky 1999). The full
model includes a logistic population model (Gotelli 2008), and landscape structure is
represented by multi-cell ‘patches’ of uniform carrying capacity, initialised by a voter
model (Liggett 1999) where the number of rounds of voting controls the spatial scal.
Alternative landscape structures can be easily accommodated with SIMMAP (Saura and
Martinez-Millan 2000) an attractive option. Figure 4 shows the complete model.
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Figure 4. The complete model prototype. Carrying capacity in each cell is coloured
from white to black as capacity increases, and a population of mobile organisms is shown
in shades of red.

5. Conclusions

A mechanism for efficiently representing dispersal processes with a significant long-
distance component on large landscapes has been developed and integrated into a general
model. Preliminary results on the interaction between the scale of landscape structure
and dispersal kernel properties will be presented.
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