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1. Introduction  
Cellular Automata (CA) are dynamic mathematical systems (which are discrete in time 
and space, operate in uniform regular lattice, and are characterized by local interaction) 
that can be used with GIS to simulate land use change. The use of Artificial Neural 
Network (ANN) for GIS cellular automata calibration is one of the most popular 
stochastic GIS CA calibration techniques. 

ANNs shortcomings are that ANNs are “black-box” models, and have a static nature 
in which causal factors are undynamic (Kocabas and Dragicevic 2007); and might suffer 
difficulties with generalization and produce models that may overfit the data (Karystinos 
and Pados 2000).  This study introduces the use of a kernel based model called “Support 
Vector Machine (SVM)” for calibrating the GIS cellular automata. SVMs are robust, 
dynamic, and unsusceptible to overfitting. SVM results are compared with the ANN.  

2. CA calibration using support vector machine  
A more detailed SVM introduction is given in Cortes and Vapnik (1995) and 
Watanachaturaporn et al. (2004). Given a training dataset which consists of n  training 
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samples ),(),...,,(),,( 2211 nn yxyxyx , where N
ix ℜ∈  , such that }1,1{ +−∈iy . The 

objective of SVMs is to find a linear decision function defined by bxwxf +⋅=)( , where 
Nw ℜ∈  , and ℜ∈b  is a bias. The hyperplanes for the two classes are represented by 

1)( ≥+⋅ bxwyi . Slack variables 0>ξ  account for misclassification. ii bxwy ξ−≥+⋅ 1)(  
represents the hyperplanes for the two classes. The optimal hyperplane 0)( =xf  is 
located where the margin between the two classes is maximized and error minimized. 
The constrained optimization problem is, 
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The constant C , ∞<< C0 , is called the penalty value. Equation 1 is solved by 

constructing the Lagrangian,  
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and finding the saddle point of ),,,,( βαξbwL . The dual form of the solution of (2) 
becomes: 
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0≥iα are called the Lagrange multipliers. According to the Karush-Kuhn-Tucker (KKT) 
optimality condition (Fletcher 1987); some of the multipliers will be zero. Multipliers 
with nonzero values are called the support vectors. The result from the optimizer, called 
an optimal solution, is the set ),...,( 00
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of class labels +1 and -1. The decision rule is then applied to classify the dataset into two 
classes +1 and −1, 
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For a nonlinear problem the transformation function φ  maps the data into a higher 
dimensional space. Suppose there exists a function K , called a kernel function, such that, 

)()(),( jiji xxxxK φφ ⋅≡ .                                                                                            (5) 
The formulation of the kernel function from the dot product is a special case of Mercer’s 
theorem (Mercer 1909).  The optimization problem becomes, 
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while the decision function becomes, 
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Examples of some well-known kernel functions are: linear kernel )( ixx ⋅ , polynomial 

function d
ixx )1( +⋅ , radial basis function 
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function ))(tanh( Θ+⋅ ixxκ . 
Now we can calibrate our CA using SVM outputs. We can map the SVM 

outputs )(xf , into probabilities using a sigmoid function with parameters A  and B (Platt 
1999), 
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Let )/1( fP  be replaced with t

jiP , , where t
jiP ,  is the development probability at time t .  

For stochastic CA, a stochastic perturbation term can be incorporated to represent 
unknown errors during the simulation; in order to ensure the predicted patterns 
approximate reality as closely as possible. The error term ( RA ) is given by White and 
Engelen (1993) as: 
 

αγ )ln(1 −+=RA  .                                                                                                     (9)                                     
In order to increase control over the perturbation, (9) can be modified as (Okwuashi et al.   
2009): 
 

αγβλ )ln(−+=RA .                                                                                               (10)                                   

 
where γ  is a uniform random variable within the range 0 and 1; and λ ,α , and β  are 
parameters that control the magnitude of the perturbation.   

The development probability at 1+t  can be revised as:   
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where jicons ,  denotes constraints’ contributions.  
1

,
+t
jiP  is determined as: 
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where ψ  implies predefined threshold.  

3. Methodology  
This study employed mainly remote sensing Landsat Thematic Mapper images acquired 
December 18, 1984 and February 6, 2000 covering Lagos, Nigeria; and several other data 
sources. Fourteen land use variables were extracted for learning (table 1). These variables 
were extracted with the ArcGIS.  

The distance variables were calculated using the Euclidean Distance function. The 
number of developed cells in the 3 x 3 Moore’s neighbourhood was first computed using 
the Focal Statistics function, while the updated neighbourhood and modelling was done 
in MATLAB. The stratified random sampling was used to extract the training data. The 
following values were used for the calibration: 058.0=λ , 5=β , 1=α , 1−=A , 0=B , 

2.0=ψ , polynomial function of degree 2=d , and 0810 −= eC . Basically, 0
iα , 0b ,  

and )(xf  were computed. Only the neighbourhood variable 14x , was updated in every 
iteration to determine a new )(xf , t

jiP , , and 1
,
+t
jiP . Undeveloped cells that have 

development probability greater than or equal to the threshold probability ψ  were 
converted to developed cells. The visualization of results was done in ArcGIS. The ANN 
was trained with the method of back-propagation, using a 'two-layer feed-forward 
network' with 55 neurons in the hidden layer.  
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Proximity variables 1x : distance to water 
 2x : distance to residential area 
 3x : distance to industrial and commercial centres 
 4x : distance to major roads 
 5x : distance to Lagos Island 
 6x : distance to international airport 
 7x : distance to local airport 
 8x : distance to Apapa Port 
 9x : distance to Tin Can Island Port 
 10x : distance to all settlements 
 11x : distance to all vegetated cells 
  
Weighted variables 

12x : population potential 



 13x : income potential 
  
Local variable 

14x : t
x33Ω  is the number of developed cells in the 33×  

Moore neighbourhood at time t  ( 90 −  pixels) 
  
Constraint variables Major roads, water, and developed cells 
 
Table 1. The fourteen land use variables 

4. Discussion and results 
Figure 1 presents the actual land use development derived from a remotely sensed image 
and the simulated result from the support vector machine GIS-CA model. The SVM 
result of the cell-by-cell comparison for periods, 1984-2000 is given by the confusion 
matrix in table 2 and the result from the ANN method is given by the confusion matrix in 
table 3. 
     Kappa statistic was calculated for the SVM and ANN respectively (see figure 2). The 
kappa coefficient can provide much better interpretation for measuring accuracy because 
it can address the difference between the actual agreement and chance agreement (Fung 
and LeDrew 1988). SVM performed better than ANN judging by their kappa coefficients.  
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Figure 1. (a) Actual base year: 1984, (b) Actual target year: 2000, and (c) SVM simulated 
target year: 2000 
 
 



                  Reference data        
    Developed     Undeveloped 
 Predicted data   
 Developed 57523 7706 
 Undeveloped 14440 95831 
 
 Table 2. SVM confusion matrix  
 

                  Reference data        
    Developed     Undeveloped 

Predicted data   
    Developed 56223 16644 
    Undeveloped 15740 86893 
 
Table 3. ANN confusion matrix  
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Figure 2. Validation of models: Kappa coefficients for SVM and ANN 

5. Conclusion  
The result of this modelling showed good conformity between the simulated and the 
actual land use development. The SVM posted a better result than the ANN model. 
SVMs are relatively new tools that have been applied to various fields of study, but have 
not been favourably adopted for modelling land use change. SVMs may be 
computationally intensive, but studies have shown that their results are highly accurate, 
and seem a promising tool for simulating land use change. 
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