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1. Introduction  
In this paper we applied the fuzzy ARTMAP algorithm for combining multispectral aerial 
imagery and lidar data so that the individual strengths of each data source can 
compensate for the weakness of the other. Test data from four different study areas with 
different characteristics have been used. First, we filtered the lidar point clouds to 
generate a Digital Terrain Model (DTM), and then the Digital Surface Model (DSM) and 
the Normalized Digital Surface Model (nDSM) were generated. After that, we have 
derived 22 attributes from both aerial image and lidar data by a number of algorithms. 
The attributes include those derived from the Grey Level Co-occurrence Matrix (GLCM), 
Normalized Difference Vegetation Indices (NDVI) and slope. Finally, a Fuzzy ARTMAP 
was used to detect buildings, trees, roads and grass from the aerial image, lidar data and 
the generated attributes.  

The rules for tuning the parameters of the Fuzzy ARTMAP and its relation to the 
produced classification accuracy have been studied. The ability of the Fuzzy ARTMAP 
to detect features has been evaluated and compared against other classifiers. Also, the 
transferability of information from one data set to another has been tested. Finally, the 
contributions of the individual attributes to the quality of the classification results were 
assessed.  

2. Previous work 
The numbers of studies that have utilized Fuzzy ARTMAP for highly spectrally 
dimensional image analysis are limited. Carpenter et al. (1995) have developed a new 
methodology for automatic mapping of vegetation from Landsat Thematic Mapper (TM) 
and terrain data, based on the fuzzy ARTMAP neural networks. Mannan et al. (1998) 
have applied the fuzzy ARTMAP to the supervised classification of multi-spectral 
remotely-sensed images obtained from the  LISS-II sensor of the Indian IRS-1B satellite. 
Recently, Gamba and Houshmand (2001) have discussed the segmentation of urban 
optical and SAR images by means of competitive neural networks based on Adaptive 
Resonance Theory (ART).  

3. Study area and data sources  
Four test data sets of different characteristics and different sizes were used in this study 
as shown and summarized in fig. 1 and table 1 respectively.  
 
 



Test area Size Lidar Data Aerial images 
Sensor wavelength bands pixel size

UNSW 0.5 x 0.5Km Optech ALTM 1225 1.047μm RGB 10cm 
Bathurst 1 x 1Km Leica ALS50 1.064μm RGB 50cm 
Fairfield 2 x 2Km Optech ALTM 3025 1.047μm RGB 15cm 
Memmingen 2 x 2Km TopoSys 1.56μm CIR 50cm 

 
Table 1. Characteristics of image and lidar data sets. 

   

   
 

Figure 1. Orthophotos for: (a) UNSW; (b) Bathurst; (c) Fairfield; and (d) Memmingen. 
 
4. Filtering of lidar point clouds 
Filtering is the process of separating on-terrain points from points falling onto natural and 
human made objects. A filtering technique based on a linear first-order equation which 
describes a tilted plane surface has been used (Salah et al. 2009). After that, the filtered 
lidar points were converted into an image DTM, the DSM was generated from the 
original Lidar point clouds and the nDSM was generated by subtracting the DTM from 
the DSM. Fig. 2 shows the results for the UNSW test area. 

 
 
 



 
 

Figure 2. (a) DSM, (b) DTM and (c) the nDSM. 
 

5. Generation of attributes 
Features or attributes calculated for pixels are presented as input data for a classification 
method. In our test, a set of 78 possible attributes were selected. Because of the way the 
texture equations derived from the GLCM are constructed, many of them are strongly 
correlated with one another. Based on these facts, only 22 of the 78 possible attributes 
were uncorrelated and hence available for the classification process as shown in table 2. 
Fig. 3 (a - f) shows the generated attributes from the nDSM plus the generated NDVI. 
 

Attributes Attribute R G B I DSM nDSM 
 

Spectral 
Mean       

St. Deviation       
Strength       

 
 
 
 

GLCM 

Contrast       
Dissimilarity       
Homogeneity       

A.S.M       
Entropy       
Mean       

Variance       
Correlation       

Height SD       
Slope       

 
Table 2.  The full set of the attributes;  attributes available for the classification. 

 
 

  



 
 

Figure 3. (a) GLCM-homogeneity of the nDSM, (b) GLCM-entropy of the nDSM, (c) 
Slope percent of the nDSM, (d) SD of the nDSM, (e) Texture strength of the nDSM, (f) 

The NDVI. 
 

6. Fuzzy ARTMAP classification 
Fuzzy ARTMAP is one of the most commonly used neural network classifiers. It 
performs classification of remotely sensed imagery through Adaptive Resonance Theory 
(ART) based neural network analysis (Grossberg 1976). Compared to traditional 
classifiers, it is faster and has a smaller number of parameters to manage (Mannan et al. 
1998). Fig. 4 shows the architecture of the Fuzzy ARTMAP. A detailed description is 
given by Carpenter et al. (1991). 

 

 
 

Figure 4. Fuzzy ARTMAP architecture. 



For our case, the Fuzzy ARTMAP has 29 input neurons which are: 22 generated 
attributes, 3 image bands (R, G and B), intensity image, DTM, DSM and nDSM. First, a 
total of twenty samples evenly distributed through the image were selected as training 
data for each class. Table 3 summarizes the Fuzzy ARTMAP architectures for the 
classification of the four test areas and fig. 5 shows the classification results. 

 
 F1 (input layer) F2 (category layer) Iterations Weights 
UNSW 29 1494 3433 

Initially set to 1  Bathurst 29 1915 4025 
Fairfield 29 2171 46674 
Memmingen 29 3357 17688 

 
Table 3. Fuzzy ARTMAP architectures for the four test areas.  

   

                   
 

Figure 5. Classification results using the fuzzy ARTMAP for: (a) UNSW; and (b) 
Bathurst; (c) Fairfield; and (d) Memmingen. 

 

7. Testing the performance of Fuzzy ARTMAP parameters  
Five parameters should be specified for the Fuzzy ARTMAP: the Choice parameter α (a 
small positive constant); two learning parameters β1 and β2 (0≤ β ≤1); and two vigilance 
parameters ρ1 and ρ2 (normally set very close to 1). In order to study the relation between 
the produced classification accuracy and the ARTMAP parameters, first, we specified the 
ARTMAP parameters as shown in table 4. After that, each parameter was changed 
gradually and the classification accuracies were computed and plotted against the 
parameter value as shown in fig. 6.  
 



Parameter  β1 ρ1 β2 ρ2
Value 0.01 1 0.98 1 1 

 
Table 4. The chosen parameters for the training of fuzzy ARTMAP 
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Figure 6. The relation between the Fuzzy ARTMAP parameters and the produced 
classification accuracy. 

 

8. Fuzzy ARTMAP against other classifiers 
To evaluate the ability of the Fuzzy ARTMAP to detect features, the Fuzzy ARTMAP 
has been compared against two classifiers of different characteristics (the Self Organizing 
Map (SOM) and the Classification Trees (CT)) as shown in fig. 7. The results show that 
the Fuzzy ARTMAP has performed the best followed by SOM and CT. The produced 
classification accuracies were over 95% except for Memmingen test area, over 88%, 
which has quite different sensors and scene characteristics, see table 1.   
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Figure 7. Fuzzy ARTMAP against RT and SOM. 
 

9. Transferability of information from one data set to another 
In order to test how well the information is transferable from one data set to another, 
instead of training the network for each individual case, the weights derived for the 
UNSW test area have been used to classify the other three test areas; fig. 8 shows the 
produced classification accuracies. For Memmingen Test area, the UNSW weights 
resulted in very poor classification accuracy since both data sets have different ground 
cover types and different lidar and aerial image characteristics as mentioned in table 1.   
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Figure 8. The performance when the weights derived for UNSW data set were used to 
classify the other three data sets. 



10. Contributions of the individual attributes 
Furthermore, the contributions of the individual attributes to the quality of the 

classification results were evaluated. Fig. 9 shows the improvement in the average 
classification accuracy by each individual attribute.  
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Figure 9.  Contributions of the individual attributes to the quality of the classification. 
 

11. Conclusion  
The Fuzzy ARTMAP has been successfully applied for image and lidar data fusion. The 
results highly recommend setting the vigilance parameter (ρ1) and the learning rate (β1) 
very close to one but not equal to one. The results also showed that the weights generated 
for one test area can be used to classify other areas with similar ground cover types and 
for lidar and aerial image data with similar characteristics. Finally, the nDSM and 
entropy from the nDSM performed the best, improving the average accuracy by 19.8 and 
21.2%, respectively.  
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