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1. Introduction  
Currently, many methods exist that utilise Light Detection and Ranging (LiDAR) data 
sets in the earth sciences.  Methods for its application to ecological sciences are, 
however, limited. For example, the use of scattered data for tree detection and delineation 
is a needed improvement in LiDAR processing methods, as it holds the promise to 
provide ecologists with relevant information about forests (Pouliot et al. 2002). 
Terrestrial ecologists and foresters have relied on remote sensing methods, such as aerial 
photography, which can be subjective, time-consuming, and require trained personnel 
and equipment (Pouliot et al. 2002). More recent advances in optical remote sensing 
include automatic detection and delineation between trees using top-down image data 
(Pouliot et al. 2005). 

We have developed a RANdom SAmple Consensus (RANSAC)-based (Fischler and 
Bolles 1981) program, referred to as StarSac, which utilises the ‘depth’ found in LiDAR 
data for tree detection and delineation.  StarSac was developed using Oliver Kreylos’ 
Virtual Reality toolkit (http://idav.ucdavis.edu/~okreylos/ResDev/Vrui/index.html) to 
visualise LiDAR data collected at the Cosumnes River Preserve. The purpose for 
developing this program is three-fold: 1) to effectively remove vegetation signals from 
Airborne Laser Swath Mapping (ASLM) data to better understand floodplain 
development and levee integrity; 2) to understand the growth trajectory of restored 
riparian forests; and 3) to provide an effective means of monitoring natural forests and 
orchards that can be used in carbon banking. 

To evaluate StarSac, we used polygons that were digitised from a two-dimensional 
bird's eye view of forested areas in the Cosumnes River region.  The Cosumnes River 



Preserve, comprised of over 40,000 acres located in California’s Central Valley, is 
engaged in active and passive methods of riparian forest restoration. Using the preserve 
as a living laboratory, University of California, Davis has conducted exhaustive studies 
(http://baydelta.ucdavis.edu/) to understand the ecological processes that drive riparian 
forest recruitment and floodplain development. By allowing and creating levee breaches, 
the preserve has been able to successfully recruit early successional forest species on 
sand-splay features in river floodplains (Florsheim and Mount 2003). Monitoring the 
growth of these forests becomes increasingly difficult as passive restoration projects 
continue to yield success. By utilising LiDAR acquisition in conjunction with StarSac, 
we can identify and potentially track tree growth, forest composition, and structure while 
collecting minimal field data. 

2. Background 
RANSAC, the foundation of our program's methods, has been applied to LiDAR data sets 
in different ways.  Fontanelli et al. (2007) used RANSAC to estimate a position within a 
mapped environment.  Reitberger et al. (2007, 2009) used RANSAC to find tree stem 
positions. Unlike other projects, we use a modified version of RANSAC to find tree 
canopies. 

The StarSac program was developed based on the methods described by Fischler and 
Bolles (1981), and Torr and Zisserman (2000). The original RANSAC algorithm attempts 
to find the best model that fits a set of data points.  This goal is accomplished by 
instantiating a model from a minimum number of randomly selected data points and 
identifying other points that have low error relative to this model (the consensus set, 
which consists of inliers).  Ideally, the model with a large-enough consensus set, or the 
model with the largest consensus set, is selected as the model that best fits the original set 
of data points.  In this tree-finding scenario, the best-fit model would be evaluated based 
on its ability to detect tree locations.   

3. Methods 
The model that is used for StarSac is based on a paraboloid, defined as: 
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The terms xc, yc, and zc are the coordinates of the centre of the paraboloid.  This 

equation was chosen because it is easy to solve for its parameters (only two points are 
required) and it allows one to easily evaluate the shape of a model.  In the ideal model, 
the centre should be the maximum of the canopy and the paraboloid should be defined by 
a negative alpha (concave).  The radius is computed by calculating the weighted average 
height of the consensus set points.  The points closer to the centre receive higher weights.  
The program creates a point with this average height value and measures the distance 
from that point to the centre.   

The current RANSAC algorithm can be summarised as follows: 
1. For all LiDAR points 1 … n: 



a) Find a set of points around the current point to create our window.  There 
must exist at least two points inside our window so that we can determine a 
model. 

b) For iterations 1 … k: 
i. Randomly select a subset of points to create the model. Reject the model if 

it does not agree with user’s specifications. 
ii. Create consensus set based on a user-defined error tolerance.  Solve for 

radius of tree. 
iii. Restrict the window to the tree boundary (to the furthest consensus set 

point).  This allows us to grade (i.e. ratio of outliers to inliers) the tree 
model in isolation of other points. 

iv. If our model has at most ½ ratio of outliers to inliers in restricted window, 
grade it and compare it with the best model. Keep track of the best model.  
If no previous model was found then the current one is chosen. 

c) If model was found, mark it.  Create shaded graph for delineation. 
2. If multiple maxima are within each others’ radii, unmark maxima with lower 

height values.   
 One must consider various aspects when comparing this algorithm to the original 
RANSAC. First, it does not return a model if there is not a large-enough consensus set.  
Second, incompatible models are filtered by shape (alpha) and height.  Concerning height 
criteria, points are chosen with non-negative height values (above ground) since our data 
sets are fairly flat.  
 The algorithm’s parameters can be set interactively with sliders (see fig. 1) during 
program execution to match the user’s specifications. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Program screenshot showing shaded canopies.  Sliders that control window 

width, error tolerance, iterations, and shape are shown. 



4. Results 
We have evaluated StarSac against manually delineated tree canopies in a geographical 
information system (GIS) using near-infrared aerial photography (17 cm IFOV) for a 
portion of the preserve. We removed all canopies less than 0.50 m radius in our 
comparison. Our model detected 4953 canopies, compared to 3258 identified by the GIS 
method, with an average canopy radius of 2.03 m (±0.83 m standard deviation) and 2.11 
m (±1.20 m standard deviation). We conducted a matched pairs analysis, where stem 
centres were closer than canopy radius (n = 2924); radii were significantly correlated 
(Spearman’s ρ=0.38; p<0.0001) and the root-mean-square error (RMSE) was 0.60 m. The 
StarSac stem centres were also significantly closer to the GIS centres than the next 
closest neighbour (1st neighbour average distance = 1.06 m; 2nd neighbour average 
distance = 4.67; p<0.0001).  

5. Conclusions 
These results suggest that StarSac can be used to analyse LiDAR data and estimate 
canopy geometries over large areas with comparable results obtained with standard GIS 
procedures, which are time-consuming and require human interpretation. With some 
modification, the program will be able to detect and delineate tree canopies that do not 
conform to a parabolic shape. 
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