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Welcome 

The GeoComputation community has convened a series of international research conferences, 

initiated in 1996. The conference moves to a different location each year, often alternating 

between Europe or North America and the Antipodes. The 11th International Conference on 

Geocomputation 2011 is being held at University College London on 20th - 22nd July 2011, 

organised jointly by the Department of Civil, Environmental and Geomatic Engineering and the 

Department of Geography. Scholars from 18 countries and regions registered for this symposium – 

from Australia, Austria, Canada, China, Finland, Iran, Ireland, Israel, Japan, Malta, Portugal, The 

Netherlands, Spain, Slovenia, Sweden, Switzerland, Turkey, UK and USA.   

The Local Organising Committee received 104 submissions which were each reviewed by a minimum 
of two reviewers.  These proceedings assemble the 78 scheduled for full paper presentation at the 
conference, following revisions made in the light of reviewer comments. We would like to thanks the 
50 reviewers and members of the Programme Committee who helped in evaluating the papers.  
 
The strength and breadth of Geocomputation is reflected in the 16 parallel sessions of the 2011 
Conference. Eight sessions present advances in methods and algorithms: “Agent-based Modelling)” 
(two sessions), “Genetic Algorithms & Cellular Automata Modelling”, “Geographically Weighted 
Regression”, “Geostatistics”, “Machine Learning”, and “Space-Time Modelling and Analysis)” (two 
sessions).  Four sessions contribute to important domain specific applications of Geocomputation: 
“Geodemographics”, “Network Complexity”, “Location-Based Services”, and “GeoVisual and Terrain 
Analysis”, with two further sessions with more general focus on environmental and urban studies. 
The broader environment to Geocomputation provides the focus for two other sessions – one on 
“Uncertainty and Accuracy”, and the other on cloud computation – “VGI and Computational 
Infrastructure”.  One poster session consisting of 14 papers is also included. 
 
Five world-renowned scholars have kindly agreed to give keynotes at the Conference. They address 
‘Digital Environments and ‘Real World’ Geographies’ (Peter Nijkamp, Free University Amsterdam); 
‘Does Visualization with Geocomputation Offer Anything We Didn’t Know Already?’ (Jo Wood, City 
University London); ‘Geographically Weighted Regression and Geocomputation: an Overview of 
Recent Developments’ (Stewart Fotheringham, National University of Ireland at Maynooth); and ‘The 
Future of Geocomputation’ (Keith Clarke, University of California, Santa Barbara, USA). Another 
keynote presentation - ‘Visualising Space-Time Dynamics: Graphs and Maps, Plots and Clocks’ is 
contributed by Mike Batty, CASA, UCL, as a joint event with the ISPRS-sponsored International 
Symposium on Spatio-Temporal Analysis and Data Mining, which runs immediately before the 
Conference at same location. This session, and the joint reception scheduled to follow it, is intended 
as a forum to foster closer dialogue between these two groups. 
 
We are grateful to all the keynote speakers, all the members of the Programme Committee and all 
the reviewers for their contributions to what we hope will be a very successful conference. Our 
thanks also go to the conference sponsors Ordnance Survey (GB), Esri UK, John Wiley & Sons, Taylor 
& Francis, Pion and the STANDARD Project. Special thanks are also due to STANDARD team members: 
Berk Anbaroglu, Adel Bolbol, James Haworth, Ed Manley, Ioannis Tsapakis, Garavig Tanaksaranond, 
Artemis Skarlatidou, and Jiaqiu Wang, for their hard work for this event. The help from Lee Philips, 
Richard Sharp, and from the volunteers of UCL MSc in GIScience group is highly appreciated.  
 
Welcome to London and to UCL! 
 
Tao Cheng, Paul Longley, Claire Ellul, Andy Chow 
 Local Organising Committee 
University College London, 2011 
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1. Introduction  

Recent years have seen a rise in the number of methods and applications which require 

realistic individual-level data/synthetic populations.  This trend can be attributed to a 

number of factors including increases in computational power and storage, a wealth of 

individual level data (for example, the British Household Panel Survey) and the 

development of new computational paradigms, such as cellular automata and agent-based 

modelling (ABM).   

Static spatial microsimulation samples a synthetic population (a population built 

from anonymous survey data at the individual level) which realistically matches the 

observed population in a geographical zone for a given set of criteria.   There is a diverse 

set of research and policy applications that use synthetic populations in a spatial setting, 

including: health (Smith et al, 2009, Tomintz and Clarke, 2008, Brown and Harding, 

2002), transportation (see, for example, McFadden et al, 1977; Beckman et al, 1996) and 

water demand estimation (Williamson and Clarke, 1996). 

ABM can also use synthesised data as a base population.  There has been a rapid 

uptake in the use of ABM in Geography with applications ranging from simulating the 

movement of burglars (Malleson et al, 2009) to replicating dynamics in spatial retail 

markets (Heppenstall et al, 2006).   Although the construction of an ABM does not 

require a complete individual data set, creating an agent population from a realistic 

synthesised individual dataset can only improve the realism of these models. 

There are several established methodologies for generating synthetic populations.  

The focus of this paper will be on deterministic reweighting (Smith et al, 2009), 

conditional probability (Monte Carlo simulation) (Birkin and Clarke, 1988, 1989) and 

simulated annealing (combinatorial optimisation) (Openshaw, 1995; Williamson, Birkin 

and Rees 1998; Voas and Williamson, 2000, 2001).  These methods were selected due to 

their common application in geography. Many recent spatial microsimulation studies 

including Anderson (2007), Ballas et al. (2005), Voas and Williamson (2000, 2001), 

Tomintz et al. (2008) Smith et al. (2009) and Morrissey et al. (2008) have adopted a 

variation on at least one of the three approaches examined here.   
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The work within this paper critically compares each approach as they are used to 

generate a synthetic individual level population at three different spatial scales, extending 

the initial work reported in Voas and Williamson (2000, 2001).   

 

2. Spatial Microsimulation Algorithms  

There are numerous algorithms that have been designed or adapted to produce synthetic 

populations.  Here, three approaches that have commonly been adopted in recent years, 

each one taking a broadly different methodological approach, are reviewed. The three 

approaches are deterministic reweighting, a large iterative proportional fitting routine, 

conditional probabilities, which uses statistical joint probabilities, and simulated 

annealing, a combinatorial optimisation method. 

   

Table 1 provides a summary comparison of the three algorithms. 

 

 Deterministic 

Reweighting 

Conditional 

Probabilities 

Simulated 

Annealing 

Easy setup (is there much pre-

processing)? 
Yes Yes No 

Sensitive to specification of constraint 

order? 
Yes Yes No 

Limit to number of constraints that can be 

used? 
Yes Yes No 

Requires a sample population? Yes No Yes 

Can take forward and backward steps to 

find an appropriate solution? 
No No Yes 

 Stochastic? No Yes Yes 

Speed of execution Fastest Middle Slowest 

Table 1. Summary comparison of the three algorithms. 

 

3. Data and Experiments 

Each of the spatial microsimulation methods discussed is used to produce a synthetic 

population at the Output Area (OA), Lower Layer Super Output Area (LLSOA) and 

Middle Layer Super Output Area (MLSOA) spatial scales.  The synthesised populations 

are tested against known Census information, produced at all three geographies to 

evaluate each algorithmic approach.  In summary, each population produced will be 

tested to examine: 

 

(i) Reproduction of variables used to constrain each of the synthetic models at each 

of the different spatial scales.   
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(ii) Evaluation of the populations produced against information extracted from the 

Census of Population 2001 using the constraint variables cross-tabulated against 

each other.   

(iii)Examination of how reliably information from the sample population not 

included in the model constraints can be captured.   

(iv) Aggregation of outputs from OA to LLSOA and MLSOA and a subsequent 

evaluation of the aggregated output against Census of Population 2001 at the 

appropriate geographical level. 

The results of each of these experiments will be presented at the conference.  

4. Selected Results 

4.1 Representing Constraint Variables 

Voas and Williamson (2000) stated that all constraint attributes should be well 

represented in a synthetic population.  The purpose of this test is to evaluate how well the 

constraint attributes are reproduced in each of the algorithms.  Populations are 

synthesised using each algorithm at each spatial scale OA, LLSOA and MLSOA, making 

a total of nine different synthetic populations being evaluated.  The evaluation statistic 

used was classification error (CE); this is the total absolute error/ 2. 

Table 2 shows that only simulated annealing has successfully recreated all of the 

constraint attributes at all three spatial scales with zero misclassification.  The conditional 

probabilities algorithm produces a reasonable fit for all of the constraints over each scale. 

However, the classification error almost doubles for each constraint as the geographical 

scale becomes finer.  The deterministic reweighting method produced the worst fit.  With 

the exception of Highest Qualification (which shows a slight decrease in CE, but overall 

this constraint has a very poor fit to the observed data) all of the constraints show a slight 

increase in CE as geographical scale becomes finer.  

 

Constraint 

DR CP SA 

CE 
% 

CE 
CE 

% 

CE 
CE 

% 

CE 

 Middle Layer Super Output Area 

Gender 29,510 4.12 102 0.01 0 0.00 

Ethnic Group 14,897 2.08 2,290 0.32 0 0.00 

Age 128,999 18.03 144 0.02 0 0.00 

Marital Status 95,335 13.33 478 0.07 0 0.00 

NSSEC 84,731 11.84 4,378 0.61 0 0.00 

Highest 

Qualification 

229,407 32.07 2,569 0.36 0 0.00 

 Lower Layer Super Output Area 

Gender 30,297 4.23 176 0.02 0 0.00 

Ethnic Group 15,631 2.18 4,010 0.56 0 0.00 

Age 131,230 18.34 245 0.03 0 0.00 
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Marital Status 96,453 13.48 842 0.12 0 0.00 

NSSEC 88,282 12.34 9,659 1.35 0 0.00 

Highest 

Qualification 

228,425 31.93 5,219 0.73 0 0.00 

 Output Area 

Gender 33,430 4.67 245 0.03 0 0.00 

Ethnic Group 16,707 2.34 5,292 0.74 0 0.00 

Age 135,673 18.96 418 0.06 0 0.00 

Marital Status 98,696 13.80 1,828 0.26 0 0.00 

NSSEC 95,117 13.30 21,939 3.07 0 0.00 

Highest 

Qualification 

227,720 31.83 11,385 1.59 0 0.00 

DR = deterministic reweighting, CP = conditional probabilities, SA = 

simulated annealing 

Table 2. Representation of the model constraints in the synthesised populations. 

 

To investigate the poor fit of the deterministic reweighting algorithm, the number of 

misclassified people per zone is plotted for the Ethnic Group, Gender and Marital Status 

constraints at the MLSOA geography (fig. 1 - 3). The Ethnic Group scatter plot (fig. 1) 

shows that, despite having almost 15,000 classification errors, the spread of error tracks 

the line of perfect fit (where each point would reside if the synthesised population 

matched the observed population exactly).  Only small discrepancies exist, but the 

discrepancies are evident in many geographical zones.   

Fig. 2 shows a scatter plot of gender classification errors which are grouped very 

tightly together.  The lack of spread along the line of perfect fit is a reflection that most 

geographical zones have a relatively balanced population between male and female and 

do not display the extremes that can be observed in other constraint attributes. Despite the 

relatively ubiquitous nature of the attribute, many of the geographical zones are some 

distance away from the perfect fit line; this is reflected in the 29,510 classification errors 

observed at the MLSOA geography.  This high level of error may be due to the constraint 

being last in the processing order and the attempt of the algorithm to smooth towards the 

global mean.  

The marital status constraint (fig. 3) is particularly poorly fit by the deterministic 

reweighting routine.  Although this constraint does not have the highest level of 

associated classification error, it does display a distinct pattern.  Most MLSOA zones 

have the married category over represented and the single category underrepresented in 

the synthetic population.  This suggests that the algorithm is smoothing towards the 

distribution of the sample population rather than preserving the distribution observed in 

the constraint information for each geographical area.  
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Figure 1. Deterministic reweighting - 

Ethnic Group misclassification error 

at MLSOA geography. 

Figure 2. Deterministic reweighting - 

Gender misclassification error at 

MLSOA geography. 

 

Figure 3. Deterministic reweighting - Marital  

Status misclassification error at MLSOA geography. 

5. Conclusion 

The work in this paper has briefly presented selected results of deterministic reweighting, 

conditional probabilities and simulated annealing spatial microsimulation methods for 

representing constraint variables at varying spatial scales.  Of the three methods assessed, 

simulated annealing was found to consistently produce the best outcome when fitting 

constraints.  Further conclusions and analysis drawn from the other experiments will be 

presented  at the conference. 
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Building Geodemographics on Parallel Graphics Processing Unit Architecture  

 

1. Introduction 

Geodemographic classification categorise small geographic areas into a series of discrete categories 
that aim to represent the multidimensional characteristics of individuals living within these 
neighbourhoods. Real-time geodemographic classification is the vision for an online and automated 
web based system that enables users to build, visualise and test a bespoke classification within a short 
time period (probably in minutes). There have been a number of technological advances which are 
enabling us to develop online systems for the creation of real-time classifications. This paper presents 
a summary of our research to date in this area, and cumulates in a pilot real-time geodemographic 
information system for specification, estimation and testing of classifications on the fly. 

 There are numerous methodologies for creating geodemographic classifications which differ based 
on the datasets used, the normalisation technique applied, the method of aggregation and finally, the 
visualisation techniques used. Geodemographic classifications are created by a clustering algorithm 
searching the attribute space of a matrix of standardised input data comprising a row for each small 
area (however defined) and a column for each attribute measure. For example, Vickers and Rees 
(2007) used k-means clustering for the creation of the National Statistics Output Area Classification 
(OAC) with data derived entirely from the 2001 Census of the Population. The k-means algorithm is a 
commonly used method for the geocomputation of geodemographic classification (Harris et al, 2005), 
however, in its original form, k-means is unstable and relatively sensitive to outlier values within the 
input data matrix. Because of this instability the algorithm requires multiple runs in order to ensure a 
robust result. For example, Singleton and Longley (2008) created a geodemographic classification 
using k-means with approximately 10,000 runs.  

The geodemographic classification system described in this paper uses a parallel implementation of k-
means (see Adnan et al, 2010) build upon NVIDIA’s Computer Unified Device Architecture 
(CUDA)i. CUDA allows different processes to run in parallel on the Graphical Processing Units 
(GPUs) of NVIDIA’s graphics cards enabling greater computational power than standard non parallel 
k-means clustering. 

 

2. Clustering by parallel k-means 

The K-means clustering algorithm has remained the core algorithm used in the creation of 
geodemographic classifications. K-means seeks to find a set of cluster centroids that minimises 
expression (3) below. 

 

∑∑ −
= =

=
n

x

n

y
yxV z

1 1

2

)( µ                                     (1) 

Where n is the number of clusters, yµ  is the mean centroid of all the points xz  in cluster y. The k-
means algorithm assigns a set of n seeds within the data set and then proceeds by assigning each data 
point to its nearest seed. Cluster centroids are then created for each cluster, and the data points are 
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assigned to the nearest centroid. The algorithm, then, re-calculates the cluster centroids and repeats 
these steps until a convergence criterion is met (usually when the switching of data points no longer 
takes place between the clusters). 

This paper presents a parallel implementation of the k-means algorithm using CUDA. CUDA is a 
general-purpose parallel computing architecture that uses the GPUs of NVIDIA graphics cards to 
solve complex computational problems. A typical CUDA enabled NVIDIA graphics card has a 
number of GPUs and a set of memory capable of storing a reasonably large amounts of data. For 
example, “GeForce 8400M GT” graphics card has 16 GPUs and 512MB of internal memory. CUDA 
requires that the computational problem to be programmed in the C language for parallel processing. 

Our proposed parallel k-means algorithm via CUDA works as follows: 

Total number of runs is specified by N. 

a) Central Processing Unit (CPU) prepares the data points and counts the number of GPUs 
available on the NVIDIA graphics card. Afterwards the CPU uploads the data points and code 
instructing one k-means run to each GPU. 

b) GPU performs k-means clustering on the data points by minimizing expression (1). When an 
optimal solution is achieved, GPU returns the result to CPU and claims the next k-means run 
from CPU if there are any. 

c) CPU stores the results returned by GPUs in a local data structure contained in Random 
Access Memory (RAM). CPU keeps on delegating requests to GPUs until number of runs are 
less than N. 

d) If number of runs is equal to N, CPU compares the “within sum of squares distance” 
optimisation criteria of all the runs. 

e) The optimal solution is the one that has minimum “within sum of squares distance”. 

In order to compare the “computational time” of k-means and parallel k-means, we ran k-means and 
parallel k-means for (k=2-30) cluster solutions at Output Area level using the London datasets, and 
then compared the time taken for each algorithm to converge on a specified number of clusters. For 
each value of k, each algorithm was run 100 times and the results are shown in Figure 1. 
“Computational time” represents the time an algorithm takes to complete 100 iterations for each value 
of k. The hardware used for this evaluation comprised an “Intel Core2 Duo 2.10GHz” CPU, 4GB 
RAM, and “GeForce 8600M GS” NVIDIA graphics card. The graphics card has 16 GPUs and 512 
MB of RAM. 
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Figure 1: Output Area (OA) level results for the two clustering algorithms 

Figure 1 indicates that parallel k-means is a lot faster than k-means clustering algorithm, and thus is 
the best choice for an online geodemographic system. 

 

 

3. Creating a bespoke real-time geodemographic classification 

A real-time geodemographic information system produces a classification in four steps which are 
Specification, Normalisation, clustering by Parallel k-means, and Visualisation. In the first step, user 
selects variables and their weightings. Weighting describes the importance of variables in the 
classification. User also specifies the number of Geodemographic Classes. In the second step, 
information system normalises the data using one of the normalisation techniques e.g. Z-scores, 
Range Standardisation, or Principal Component Analysis. In the third step, the system clusters the 
data using Parallel k-means clustering algorithm. In the final step, the information system shows the 
result in the form of maps and statistics. 

We can represent the real-time geodemographic information system as a block diagram with different 
components communicating with each other. Following Figure 2 illustrates this.  
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Figure 2: Block diagram of a real-time Geodemographics information System 

  

The remainder of this paper outlines our beta real-time geodemographics information system. This 
uses the 2001 Census inputs to the National Statistics Output Area Classification (Vickers & Rees, 
2007) aggregated at Output Area (OA). The normalisation technique incorporated into the system is z-
score, and it uses parallel k-means to cluster the data. 

3.1 Specification of Inputs 

First step in creating a classification is the specification of input variables and an assignment of a 
weight of relative importance. This is shown in Figure 3 where the ‘Born outside the UK’ variable 
will have highest weight in the output classification. 

 Variables & Weighting 
 

 

 Number of Geodemographics Classes 

 

Normalisation 

Clustering 

Visualisation 
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Figure 3: Specification of variables and their weight  

 

After variables have been selected, the number of classes in the output classification can be specified. 
This is shown in Figure 4. 

 

 

Figure 4: Specification of the number of geodemographic classes 
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3.2 Results 

Based on the previous selected inputs, the system produced a classification for London. This is shown 
in Figure 5. 

 

 

Figure 5: Classification produced for London based on selected variables 

 

The system also gives considerable information about the sizes of clusters, which is important when 
the objective of building a classification is to produce clusters of reasonably equal sizes.  

 

 

Figure 6: Cluster Membership and Within Sum of Squares 
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4. Conclusion and Future Research 

This paper has presented our pilot real-time geodemographic classification system based on CUDA 
parallel infrastructure. The system enables users to compile geodemographic classifications quickly 
(possibly within minutes) utilising the multiple processor architecture of graphics cards. Given that 
these technologies are now available as part of typical data centre and cloud architectures (e.g. 
Amazon EC2) we see this as a very scalable solution which could compile classifications based on 
inputs for more extensive geographies. 

Future research aims to evolve the testing procedures used to produce the classifications. Also, 
alternate clustering algorithms could be incorporated into the system to allow users more flexibility 
when creating geodemographic classifications. 
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i For more information on CUDA see the Nvidia website: http://www.nvidia.com/object/cuda_home.html 
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1. Introduction 
 

Geodemographic classifications require clustering algorithms to partition the records 

of large multidimensional datasets into groups sharing similar characteristics. Many 

clustering algorithms have been developed but few have been as widely implemented 

as the "traditional" methods such as K-means or Ward's hierarchical clustering (Jain, 

2010). No two methods create the same result, and multiple iterations of the same 

method may produce different clusters; it is left to the user to subjectively decide the 

best outcome. In addition most methods require an a priori impression of the number 

of groups in the data. This abstract outlines a new approach, known as consensus 

clustering, that utilises familiar clustering methods to produce more consistent results. 

The method offsets the weaknesses of one type of clustering with the strengths of 

another by establishing the consistent average outcome from multiple algorithms 

(Simpson et al. 2010). Consensus clustering has an additional advantage in that it 

provides a number of metrics that inform the researcher about the inherent groups 

within the data, and the robustness of the final cluster outcome. Still in its early stages 

of development, and largely applied in the fields of genetics and bioinformatics, the 

method has some performance issues when using large datasets but we are confident 

these can be overcome.  
 

2. Consensus Clustering 
 

Contemporary geodemographic classifications utilise clustering methods in isolation 

from one another; they do not combine their results in any way. Consensus clustering, 

proposed by Monti et al. (2003) and extended by Simpson et al. (2010), presents an 

alternative approach by representing the consensus across multiple runs of a clustering 

algorithm to determine the number of clusters in the data. This is especially useful 

when using methods that rely on random seeding to allocate the initial clusters (Monti 

et al., 2003). Confidence in the result will increase if the multiple clustering 

algorithms, or parameterisations of a single algorithm, produce comparable results. 

The output metrics from the Simpson et al. (2010) methodology inform the most 

appropriate clustering methodology in addition to indicating the optimum number of 

clusters.  

 

Clustering was undertaken using the clusterCons package, developed by Simpson et 

al. (2010). A proportion of rows are sampled before clustering with the chosen 

algorithm and parameters. In this study we utilise the Ward’s, K-Means and PAM 

algorithms.  The sampling and clustering is repeated many times gauge the impact of 

feature removal. The results from each iteration, are stored in a consensus matrix 

which contains for each pair of items the proportion of the clustering runs in which 

they are clustered together. A merge matrix provides a way of combining the cluster 
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outcomes from multiple methods by weighted averaging of their respective consensus 

matrices. The weighting can be adjusted to increase/ decrease the influence of certain 

cluster methods. In this case all three are treated as equal. This process gives an 

indication of the cluster reliability because features consistently grouped together are 

more likely to be similar than those appearing in the same group less frequently. The 

merge matrix can then be clustered to yield the final outcome. The advantage of this 

approach is that it accounts for the different classification properties in each of the 

algorithms discussed above.  

 

In addition to testing three algorithms, we group the data into a range of clusters.  The 

optimal number in this case is defined by the criteria of Monti et al. (2003) who state 

that the true cluster number (k) can be estimated by finding the value of k at which 

there is the greatest change in cumulative density function (CDF) calculated from the 

consensus matrix across a range of possible values of k. By putting the unique 

elements into descending order it is possible to calculate a cumulative density 

function CDF (c) defined over the range c=[0,1] using the following equation. 
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It is then possible to calculate the area under the curve, AUC as follows: 

 

 

     iii xCDFxxAUC 1                                        

                                     (4) 

 

where xi it the current element of CDF and m is the number of elements. If every 

iteration from the consensus clustering identifies the same groups then the matrix 

elements will be either 0 or 1, thus producing an AUC= 1. This provides the 

benchmark against which to compare the different clustering results. By plotting the 

difference in AUC values it is possible to identify the appropriate cluster number as it 

exhibits the greatest reduction. Once the optimal number of clusters has been 

identified it is possible to re-cluster the merge matrix. The advantage of this approach 

is the stability in the results produced due to the removal of bias in the clustering 

structure unique to each clustering technique.  
 

4. Data and Methods 
 

For demonstration purposes we have taken a small dataset covering the London 

Borough of Southwark and the City of London. The boroughs represent a range of 

social characteristics. Their combined population is approximately 260,000 across 770 

Output Areas (OAs). Each OA has the same 41 variables as the Output Area 

Classification (OAC) (see Vickers and Rees, 2007), standardised to z-scores. The data 

were consensus clustered over a range of k from 5 to 30. Figure 2 plots k against the 

change in AUC values. The greatest difference in AUC value occurs between 13 and 

14 clusters, suggesting that 14 clusters will provide the optimal outcome. The 

resulting merge matrix was therefore clustered into 14 groups. In addition 
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conventional clustering without a final merge matrix was performed for comparison.   
 

 
 

Figure 2: The change in AUC values at a range of k from 1 to 30. 

 
5. Results and Discussion 
 

 Figure 3 demonstrates that the clustered merge matrix facilitates a more consistent 

outcome across all three methods with K-Means and PAM being almost identical. One 

of the most useful metrics from consensus clustering is the robustness measure 

mapped in Figure 4.  The darker colours (signalling higher robustness values) are 

more prevalent when the merge matrix is clustered and there are significant 

improvements in the mean values when compared with the standard clustering 

approaches. In this case PAM produces the most robust cluster outcome that could be 

used as a basis for a final classification in this context.  

 

Aside from the stability of its outcomes, one of the key advantages of the consensus 

clustering methodology is the metrics produced that can help inform the decision 

about the optimal number of clusters to use. In many contexts "optimal" can be 

defined quantitatively, but in geodemographics the outcomes are generally mapped, 

assigned group names and provide an important contextual basis for further research. 

For these reasons "optimal" in the quantitative sense, such as with the lowest within 

sum of squares value in the case of K-Means, may not be optimal in the practical 

sense. Consensus clustering does not circumvent these issues, but it does provide 

more information on which to base decisions. For example, in Figure 2 it is clear that 

a transition AUC values occurs between 13 and 14 clusters, partitioning the data 

further will clearly have less of an impact on the final classification (in terms of its 

robustness) than partitioning into fewer clusters.  

 

A practical constraint to this methodology is it's computational intensity. A national-

level classification could not be produced at OA level on a standard desktop 

workstation, for example. It is our intention to integrate the approach with ongoing 

research into the creation of geodemographic classifications using NVIDIA’s 

Computer Unified Device Architecture (see Adnan et al. (2010) for more 

information). This process would enable the consensus clustering to be undertaken 

many times faster and facilitate fine-scale classifications on a national level.   

GeoComputation 2011

16

Session 1A: Geodemographics



 

In conclusion, this abstract has sought to outline consensus clustering in a 

geodemographics context. The method has demonstrated a strong potential for 

developing stable classifications and overcomes several of the limitations associated 

with the conventional implementation of well-known clustering techniques. More 

work is required to decrease its computation time and also investigate the practical 

relevance of the results when building a geodemographic classification.  

 

 
 

Figure 3: The mapped cluster outcomes from conventional clustering (on the right 

hand side) and merged consensus clustering (left hand side). 
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Figure 4: The mapped cluster robustness values outcomes from conventional 

clustering (on the right hand side) and merged consensus clustering (left hand side). 

Mean robustness values are also shown. 
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1. Introduction  
 
Sustainable forest management is defined as “the stewardship and use of forests and 
forest lands in a way, and at a rate, that maintains their biodiversity, productivity, 
regeneration capacity, vitality and their potential to fulfil, now and in the future, relevant 
ecological, economic and social functions […].”  (MCPFE, 1994). As such, forest 
management has to satisfy multiple and often conflicting goals. Furthermore, forest 
planning is characterised by the long-term horizon of its outcomes. Since long-term plans 
are made in the face of uncertain futures, long-term sustainable forest management 
should incorporate some measure of risk. Uncertainty emerges from a variety of sources, 
including irregular or unknown fluctuations in the demand for timber, or the occurrence 
of extreme events.  In addition, forest management is dynamic in time and space, for 
example, different stands have different properties, and the likelihood of stochastic events 
may change over time. Forest planning may be suboptimal if it ignores these sources of 
uncertainty and risk. 

Previous work on multi-objective optimisation in forest management has mainly 
used heuristic search methods. For example, Bettinger et al. (2002), Pukkala and Kurttila 
(2005) compare various heuristic optimisation techniques and conclude that Genetic 
Algorithms (GAs) perform well for more complex spatial problems. However, the studies 
did not investigate the algorithms' performance under uncertainty. 

Reinforcement Learning (RL) is an alternative approach for optimal policy 
selection. RL is a Machine Learning approach frequently used with agent-based systems 
(Sutton and Barto, 1998). Contemporary research using RL in the context of forest 
management has shown that it can find robust optimal solutions to multi-objective forest 
management problems, e.g. (Bone and Dragicevic, 2009). To further explore the 
potentials that RL provides over heuristic optimisation approaches, we perform a 
systematic comparison between RL and GA for sustainable forest management for tasks 
with increasing uncertainty.  
 

2. Problem Descriptions for Sustainable Forest Management  
 
We present several different hypothetical task environments that are used to test the 
performance of GA and RL. The task descriptions are meant to provide a proof-of-
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concept and are not striving to incorporate the multitude of complex factors in a real-
world task environment. In particular, we investigate three aspects of the forest 
management problem with increasing levels of uncertainty: (1) multi-objective planning, 
(2) temporal planning with increasing uncertainty over time, (3) planning in 
environments, which are dynamic in time and space. 

The overall task is to decide on a management option for a forest management 
unit (a “cell”), where the two management options available are to preserve or to harvest 
a cell. For task types (1) and (3) the optimisation task is to decide how many cells to 
harvest according some trade-off, reflected in the multi-objective goal. The forest is 
composed of 10 cells, where the decision for each of the cells is made sequentially. Task 
type (2) deals with temporal decision making, where the optimisation task is to decide 
when to harvest an individual cell over 10 time intervals.  

2.1  Task 1: Multi-objective goal 
 
The multi-objective goal implements the trade-off between economic return versus forest 
conservation: to satisfy the existing demand for timber while cutting as few forest cells as 
possible. Equation (1) formulates the objective as a weighted sum: 
 

   (1) 
 

We assume that the environment is static and behaves in a deterministic way, e.g. the 
demand can always be satisfied by harvesting five cells, and each cell has the same 
potential to satisfy demand. 
 

2.2  Task 2: Increasing uncertainty over time 
 
In Task (2) we explore uncertainty, which is introduced by the temporal nature of forest 
management. Within our modeling framework uncertainty increases over time, which is 
operationalised as an increasing probability of disturbance affecting a forest cell. 
 

2.3  Task 3: Spatial Dynamics 
In Task (3) we model the likelihood of forest disturbance as a function of tree age, similar 
to Bone and Dragicevic (2009). However, we extend the model to also include the spatial 
proximity to neighbouring cells and their average age. This implements the notion that 
forest disturbances tend to spread. The likelihood of forest disturbance is now a linear 
function of the cell's own age and the average age of its neighbouring cells, where we use 
a Moore neighbourhood. The cell’s age is also positively related to the amount of demand 
it can satisfy: the older the cell, the more demand it can satisfy.  
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3. Problem Implementation 

3.1 Problem Implementation in RL 

RL addresses the problem of how a forest manager should take actions in an uncertain 
environment so as to maximise some notion of cumulative, long-term utility or “reward”. 
RL uses Markov Decision Processes (MDPs) as its underlying representation for decision 
making and learning. At each time step t the process is in some state st and the forest 
manager may choose any action a(s), that is available in state s. The process responds at 
the next time step by moving into a new state s’ according to the probability P(s'|s,a), 
which is defined by the transition function Tss' , and giving the decision maker a 
corresponding reward Rss' (see (Sutton and Barto, 1998) for further details). In our case, 
the reward corresponds to the multi-objective goal as formulated by Equation (1). 

We use an implementation of the well-known SARSA algorithm. The state-action 
space of the MDP is defined as in fig.1. 

 
Figure 1. RL State-action space for the forest management problem 

The state space keeps track of the number of preserved forestCells and whether the 
demand is satisfied or not. The feature forestCycle is only used for Task 2 to keep track 
of the temporal progression. The feature ageCell and ageNeighbours are only used for 
Task 3. 
 

3.2  Problem Implementation in GA 
 
Genetic algorithms (GAs) use mechanisms inspired by biological evolution: 
reproduction, mutation, recombination, and selection (see (Holland, 1975) for further 
details). We implement GA using binary encoding, as widely used in the forest modelling 
community, e.g. (Falcao and Borges, 2001; Pukkala, 2006). A gene represents a cell and 
an allele a binary forest management option. For Task (1) and Task (3), a chromosome 
represents the whole forest of 10 cells and the binary options represent preserve or 
harvest. For the temporal problem type in Task (3), a chromosome represents same cell 
over time. The fitness function corresponds to the multi-objective goal in Equation (1). 
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4. Results 
 
RL outperforms GA with increasing significance the more uncertainty is introduced into 
the planning environment. We explain RL's superior performance by its ability to 
explicitly represent uncertainty in its transition function and to monitor dynamic changes 
in the environment in its state-space. Table 1 summarises the results and reports the 
average performance of RL and GA in terms of their average objective value (see 
Equation 1). We compare them for significant differences using a 2-tailed paired 
Student's T-test (n=300). Note that, subtasks (denoted by x.x) use different weights in 
their objective function. We will discuss and interpret the results in more detail in the full 
version of the paper. 

 
 

Task GA RL 
Task 1.1 95.00 (±0.00) 95.00  (±0.00) 
Task 1.2 5.00 (±0.00) 5.00 (±0.00) 
Task 2.1 -6.47 (±9.03) -4.63 (±8.23) * 
Task 2.2 12.27 (±8.25) 14.13 (±6.41) ** 
Task 3 -10.80 (±31.85) 15.00  (±13.09) *** 

 
Table 1. Comparing mean performance of RL and GA for task types with increasing 

uncertainty, where *denotes p<0.01, ** denotes p<0.005, and *** p<0.001. 
 
 

5. Discussion 
Our implementation of GA follows a binary encoding as widely used in the forest 
modelling community. Unlike RL, this implementation of GA doesn't have an internal 
representation of the decision process, e.g. feature states, transition probabilities, or the 
expected return of taking an action in a state, as used by MDPs. In future work, we will 
investigate the performance of advanced evolutionary algorithms, such as Linear 
Classifier Systems (Holland, 1975). We will also test the algorithms with real data.  
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1. Introduction 
SLEUTH is a simulation model for urban growth and land use changes at geographic 
scales. The model couples two cellular automata, and uses input data to capture past 
behavior as parameters during calibration. Calibration uses brute force methods, requiring 
either long execution times, or parallel computing. We describe the implementation of a 
genetic algorithm (GA) that reduced calibration time and enhanced model accuracy. 
While the model has been successfully applied worldwide (Clarke et al. 2007), 
computation time remains an obstacle to effective calibration. By designing a GA to work 
in conjunction with SLEUTH, the computation time was reduced by 80%, while the 
accuracy was improved. 
 
2. SLEUTH  
SLEUTH uses two complex cellular automata operating on a geographic region 
represented by a two-dimensional cellular grid. Every cell can perform a transition to 
another state, directed by a transition function and the values in adjacent cells (Clarke, et 
al. 1997). Cellular automata models have revolutionized urban modeling (Torrens and 
O’Sullivan, 2001), and are used to simulate various natural and man-made phenomena. 

SLEUTH simulates urban growth and land use dynamics when calibrated with a set of 
mapped data reflecting past patterns. A sequence of growth rules is applied to the cells, 
each controlled by a set of coefficients that encapsulate the dynamics of a region 
(diffusion, breed, spread, road gravity, and slope). These values are not initially known 
and require extensive calibration to determine. SLEUTH’s code automates the calibration 
process, nevertheless the user is still required to guide the calibration phases (Silva and 
Clarke, 2005). The model provides thirteen metrics describing the fit of the calibration 
coefficients, with the best set being selected for forecasting. The Optimal Sleuth Metric, a 
product of eight of the metrics, is best for optimizing calibration (Dietzel and Clarke 
2007).  

Implementation requires calibration (determining the best coefficients) and predicting 
(modeling into the future). The calibration phase simulates historical change and 
compares it to known data to determine how accurately the model simulates growth 
(Jantz et al., 2010). SLEUTH repeatedly applies sets of the five coefficients to determine 
which yields the highest OSM. Coefficients consist of numbers between 0 and 100, the 
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entire search space constituting 1015 coefficient sets. The brute force approach performs 
three passes through the search space, with each run the search granularity gets smaller. 
Two potential problems emerge, the first being the sheer computation time required. Each 
of the three calibration phases requires at least 2,000-10,000 iterations. Monte Carlo 
methods minimize within-run variability but further increase computation time. A recent 
application required over 6 months of CPU time.  

The phased and stepped brute force approach may become unable to break free from a 
local optimum, since large areas of the search space are eliminated from the solution 
domain. Using a GA in the calibration addresses both problems. By allowing the values 
to be randomly, but evenly, distributed throughout the search space and by encouraging 
the best solutions to survive, both speed and accuracy can be improved. We applied the 
GA at the code level by replacing the source code that implements the brute force 
calibration. SLEUTH’s modularity means that only the driver level function needed 
alteration, all of the model behavior modules remained unaffected.  

  

3. GA Design 
GAs simulate biological evolution and natural selection among a set of possible 

solutions, and can produce an optimal or near optimal solution. SLEUTH uses a bounded 
five dimensional search where the model metrics can direct the search. The five 
dimensions are the integer values of the five model behavior parameters, and the metrics 
reduce to the OSM. 

The application of GA to SLEUTH was first achieved by Goldstein (2004) using both 
elitism and tournament selection, and combining gene competition strategies (stratified, 
partial random, and random). Crossover employed both uniform and self-crossover, and 
mutation used a 10% randomization. The approach was tested for Sioux Falls, South 
Dakota over 200 generations, with 18 chromosomes in each run, but for only one Monte 
Carlo iteration, with the calibration repeated 10 times. Results showed that 70% of the 
chromosomes outperformed brute force yet used one fifth as much CPU time, giving 
better goodness of fit measures. Nevertheless, there was evidence that the GA became 
stuck in local maxima, and some optimization ambiguity as the work predated the OSM, 
and so compared different metrics. While the GA was only simulated (separately  
generating the parameters, that were fed to independent runs across 10 computers), 
Goldstein did explore the consequences of sub-optimal calibrations for model 
forecasting, but not which gene selection, cross-over and mutation strategies worked best. 
Our approach first tested possible strategies, and then hard coded a single strategy into 
the SLEUTH source code driver module. 

The GA for SLEUTH calibration was designed based on Goldstein’s findings and 
prior GA research including choices on encoding, fitness evaluation, crossover, mutation, 
and survival selection (Eiben and Smith 2003). The model provides a natural encoding, 
each gene is represented as a set of five integer coefficients in the range {0,0,0,0,0} to 
{100, 100,100,100,100}. Each coefficient represents a separate piece of genetic material 
for a specific gene, with all five combined composing the entire composition of a gene. 
When running the model with the five coefficients, the OSM metric provided creates a 
natural fitness evaluation for an individual gene. Crossover, the process of combining 
existing genes to create new genes, takes a subset of the coefficients from one gene and 
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combines them with the opposite subset from the other, which was simpler than 
Goldstein’s method (2004). This was performed by using a random number between 0 
and 4 and using that value to decide how many elements from the first parent are used to 
create the offspring. The remaining elements were provided by the second parent. A 
second offspring was produced from the opposite elements that created the first offspring. 
Parents were selected using tournament selection, a random subset of the population is 
chosen and two selected using probabilities proportional to fitness. Mutation replaces 
coefficients within a gene with a random value at the mutation rate frequency to maintain 
diversity. The mutation rate was provided as an input to the genetic algorithm and can be 
tuned based on the performance of the model. Lastly, survival selection is the method for 
selecting a subset of the population and its offspring for the next generation. Each 
generation replaces the weakest genes in the old population with the strongest of the 
offspring, until at least half of the population is replaced and there are no old population 
genes that are weaker than any remaining offspring. Elitism prevents the fitness from 
regressing during the calibration. 

The GA was first tested to determine population size and mutation rate. Testing used 
2,000 iterations through the model per run of the GA. Using the Demo_City test data 
provided with SLEUTH showed that neither a low nor high mutation rate was ideal, but 
within the range 0.10 to 0.16 was satisfactory (Figure 1). Results showed that population 
sizes between 15 and 30 were good choices (Figure 2). A population size of 25 and a 
mutation rate of 0.16 were chosen. While 15 showed the strongest fitness, a population 
size must be sufficiently large to maintain genetic diversity. 

 

 
Figure 1. Results of GA test: Mutation Rate 
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Figure 2. Results of GA test: Population Size 

 
 
4. Results 
The GA was used in SLEUTH and the results compared to the brute force method as 
applied to Demo_City. OSM values obtained were similar to those achieved in other 
SLEUTH applications (Table 1). 
 

Statistic 
Fitness 
(OSM) 

% 
Improvement 

Mean  0.705013 3% 
Median  0.697704 2% 
Standard Deviation  0.051764 ‐‐ 
Minimum  0.620926 ‐10% 
Maximum  0.870902 27% 
Brute Force Calibration  0.687381 ‐‐ 

 
Table 1: Genetic Algorithm Calibration Results 

 
The GA on average performed slightly better than brute force. Due to the stochastic 

nature of a GA, there were rounds where it performed up to 10% worse or 27% better 
than brute force. As with Goldstein’s test, the model was calibrated using a single Monte 
Carlo iteration to reduce computation time and allow for rapid evolution in the GA. 
  
 
5. Conclusions 
Results showed the GA can maintain or improve the fit of SLEUTH. While the median 
solution was a small improvement, performance boost varied from -10% to 27%. Yet the 
real value of GA is in reducing computation time, where it outperforms brute force 
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calibration by a factor of 5, without subjective input. This speed-up was also achieved by 
Goldstein (2004), and may be further improvable by experiment. We capped the GA at 
2,000 generations, while the brute force required a minimum of ~10,000 iterations. On an 
Intel XEON 5570 CPU one run of the GA was completed in ~30 minutes and eight runs 
could be performed simultaneously per CPU without taxing the server. This would allow 
model calibration in hours, compared to weeks with brute force. Such a saving would 
permit calibration sensitivity tests not feasible otherwise. The SLEUTH code used in this 
research was posted to the SourceForge open source site 
(https://sourceforge.net/projects/sleuth-ga/). 

Future improvements can be made to the GA through algorithm optimization and 
parallelization. These would increase the efficiency of the GA further improving speed, 
and reducing calibration to minutes. Such times would overcome one of the last 
remaining obstacles to SLEUTH’s application in urban planning and land management 
(Clarke, 2008). Furthermore, it is a good example of geocomputation, where computer 
science optimization methods (GA) meet simulation modelling in geography. 
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1. Introduction  
Cellular automata (CA) models have long been applied to simulate the evolution of urban 
areas. The large majority of CA models reported in the literature make use of regular 
cells derived from remote sensed images to represent land use and the use of irregular 
cells is scarce (Moreno et al., 2008, Stevens and Dragicevic, 2007). However, regular 
cells are not directly connected to the information that underlies the drivers of land use 
change – population, employment, or built up area indicators. We proposed a CA model 
that operates over a cell structure derived from irregular cells obtained from census 
blocks, which hold reliable data and can be easily classified for their land use (Norte 
Pinto and Pais Antunes, 2010). 

Calibration plays a critical role in modelling because it connects reality to model 
representation. CA model calibration has been a subject of different approaches using 
different types of procedures, from sensitivity analysis to optimization-based methods. 
SLEUTH (Silva and Clarke, 2002) is uses both visual calibration and a brute force 
computational procedure to compare model and reference data. Li and Yeh (2001) 
coupled a CA model with an artificial neural network to calibrate it. Barredo et al. (2003) 
used basic sensitivity analysis to calibrate the weighting parameters for the spatial 
interactions between land uses. 

2. Cellular automata model  
The CA model has a simple structure that derives from the classical formulation of CA 
with the consideration of constrained land use demand, following the concept introduced 
by White and Engelen (1993). The model operates over an irregular cellular fabric 
obtained from census blocks. Cell states are classified into a finite set of aggregated 
classes of land use. Land use interactions take place within a variable neighborhood 
which distance value is determined through model calibration. Transition rules intend to 
incorporate planning regulations and simulate land use change based on a composite 
transition potential that takes into account cell accessibility, land use suitability, and 
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neighborhood interactions within the cell neighborhood, calculated by the following 
expression  
 

( ), , , , C, Si s P i s P i P i sP ν S χ A θ N ξ i s= × + × + × × ∀ ∈ ∈  

 
where, for each cell i from the set of cells C, and for each state s from the set of states S, 
Pi,s is the transition potential for state s of cell i, Si,s is the land use suitability value for 
state s of cell i, Ai is the accessibility value of cell i, Ni,s is the neighborhood effect for 
state s of cell i considering its neighborhood Vi, νP is the calibration parameter for land 
use suitability, χP is the calibration parameter for accessibility, θP is the calibration 
parameter for the neighborhood effect, and ξ is the stochastic parameter. The model has 
30 more calibration parameters which define the linear relationships of neighborhood 
effect interactions between each pair of land uses, generically depicted in Figure 1(a) for 
attraction and Figure 1(b) for repulsion. The time step can be defined by the user. Land 
use demand is determined through the evolution of population and employment densities 
over time. The flowchart for the CA model is depicted in Figure 2. Further details on the 
structure of the model can be found in Norte Pinto and Pais Antunes (2010). 
 

 
Figure 1. Generic neighborhood effect relationships 

3. Calibration with particle swarm 
The high number of calibration parameters indicates the use of an optimization procedure 
to ensure a good search of the solution space. The calibration of the CA model is 
processed though an optimization procedure that uses a fitness measure based on kappa 
index from contingency matrixes (Couto, 2003). We used a modified version of the 
traditional kappa (named kMod) to avoid the distortion that would have been produced if 
states that cannot take part in the urban dynamics – for example, agricultural or 
ecological reserve land – were considered. The inclusion of cells in this state would be 
misleading by producing a larger – though meaningless – agreement between simulation 
and reference maps. 

The optimization algorithm chosen was the particle swarm (PS), which roots are in the 
simulation of social behaviors, in the study of the synchronized movement of bird flocks 
and fish schools (for further details please see Kennedy, 1997, and Parsopoulos and 
Vrahatis, 2002). This algorithm is suitable for dealing with a high number of dimensions 
(our calibration parameters) because it has a simple formulation which ensures that the 
complex interdependences between the parameters are taken into account in the 
calibration process. The algorithm makes use of a swarm of p particles (from a few to 
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traditionally up to 120, but with no upper limit) will fly through the search space during n 
iterations. The larger the swarm is, the better the search space is searched. Each particle 
has D dimensions: in our CA model each calibration parameter is represented by a PS 
dimension. Hence, there will be 48 dimensions for each particle. The algorithm retains 
the position and the velocity of each particle in every iteration, calculating their new 
values considering the group leader and their individual best positions. The flowchart for 
the PS algorithm is depicted in Figure 2. Note that CA are an embedded process that is 
called as many times as the number of PS iterations multiplied by the number of particles.  

 

 
Figure 2. CA model (grey) and PS algorithm flowchart 

4. Model results  
The model was tested using a set of twenty test instances generated to simulate plausible 
spatial structures. These test instances have two reference land use maps (initial and final) 
for two moments in time, comprising information about population, employment and 
accessibility considering a road network. Three examples are depicted in Figure 3. Land 
use was classified with a set of aggregate cell states: urban low density (UL) and urban 
high density (UH), non-urbanized urban areas (XU); industry (I), non-urbanized 
industrial areas (XI); and areas where construction is highly restricted (R). 
Global kMod results for the entire set of problems are depicted in Figure 4. These results 
can be considered good for a simulation process: 50 percent of the problems achieved a 
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kMod around 0.800 or higher and 75 percent of them exceeded 0.750. Figure 4 also 
presents the variation of the absolute kappa measure for the set of test problems. For 65 
percent of the problems, the agreement exceeded 0.900 and 95 percent exceeded 0.850. 
Overall accuracy for the kMod measure also exceeded 0.850 for 75 percent of the cases. 
These values are commonly accepted as very good agreement between modeled and 
reference situations (Barredo et al., 2003). 
 

 
Figure 3. Three examples of test instances. 
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Figure 4. Global kMod and kappa results for the set of twenty test problems. 

 

5. Concluding remarks 
The results obtained for the set of test instances show that the use of the PS algorithm 
ensures an efficient search of good sets of calibration parameters for the CA model. The 
average value of the fitness measure kMod is high and is equal or higher than the values 
founded in the literature for other CA models. Current developments of our CA models – 
focusing on a multi-scale approach – also use the PS optimization for model calibration. 
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1. Introduction  
Cellular Automata (CA) models are among the most popular models for simulating 
spatial change and they have been developed and applied intensively during the past two 
decades. Two main features made CA interesting for urban studies, ever since they were 
introduced by Waldo Tobler in the late 1970s (Tobler, 1979): first, their inherent 
spatiality which suits the simulation of a wide range of geographic phenomena; second, 
the possibility of simulating complex patterns of, for example, land use starting from a 
simple conceptual framework that includes the definition of a cell space (form), a 
neighborhood (interaction), and a finite set of transition rules (behaviors) applied to a 
finite set of cell states (land uses). This conjugation of form and function make CA 
models suitable for capturing the contribution of different phenomena to the complex 
processes of urban change.  

These models are commonly used to simulate land use change at a regional or 
metropolitan level considering land use dynamics at a local level (Barredo and 
Demicheli, 2003, Silva and Clarke, 2005). They consider increasingly smaller cells, 
making use of the high resolution of today’s remotely sensed images to capture many 
interactions that occur at a very large scale. Regular cells are used at the local scale 
(pixels) and at a regional scale, as aggregations of smaller cells (Van Vliet et al., 2009).  

We address these issues of scale and cell form by proposing a macroscale CA model 
that tries to capture aggregated land use change at a regional level. We use administrative 
units – municipalities or similar units, varying with the national context – as irregular 
cells to simulate land use change considering population and employment growth and 
accessibility measures at a regional scale. The use of irregular cells, regardless of the 
scale, is scarce in the literature (Stevens and Dragicevic, 2007, Moreno et al., 2008). It 
ensures a good link between form and reliable data, an approach that has been 
successfully applied at the local scale (Norte Pinto and Pais Antunes, 2010).  

Scale has been debated over the years. The evolution of computation allowed 
researchers to downscale from the typical large scale models of the 1950s and 1960s to 
the high resolution models of our decade. The debate over modeling scale started with the 
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famous Requiem for large-scale models (Lee, 1973), and continued over the years, with a 
new moment in the mid 1990s when again the issue was brought to the agenda (Lee, 
1994, Klosterman, 1994). Recently, there is again a new interest on scale, focusing also 
on CA models (Ménard and Marceau, 2005, Benesson, 2007, White, 2007, Briassoulis, 
2008, Verburg et al., 2008).  

2. Macroscale CA model  
The model uses municipalities (or similar administrative units) as cells. Cell states are 
classified into a finite set of artificial land area, accounted as a percentage of the total cell 
area. Land use interactions take place within a variable neighborhood which distance 
value is determined through model calibration. Transition rules intend to simulate spatial 
interaction based on a transition potential functional that depends on the population, the 
employment, and a function of distance over the road network, calculated by the 
following expression: 
 

 , C, CP i j
i β

ij

α P E
V i j

d

× ×
= ∀ ∈ ∈  (1) 

 
where, for each cell i from the set of cells C, Vi is the transition potential for cell i, Pi is 
the number of residents in cell i, Ei is the number of registered employees in cell i, di,j is 
the distance between cells i and j (from the set of cells C) measured by the road network, 
αP is a calibration parameter and β is the accessibility calibration parameter. In each time 
step, cells are selected by the model for urbanization though a measure of its relative 
probability (taking into consideration all cells) regarding the transition potential value, 
calculated through an application of the logit model as follows: 
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where, for each cell i from the set of cells C, Ui is the relative probability value of cell i, 
Vi is the transition potential for cell i, and αL is the calibration parameter of the logit 
model. 

The model is calibrated through an optimization procedure based on the particle 
swarm (PS) algorithm that uses as fitness measure the kappa index for contingency 
matrixes. PS makes use of a swarm of p particles that will fly through the solution space 
during n iterations. Each particle has D dimensions: in our CA model each calibration 
parameter is represented by a PS dimension. The algorithm retains the position and the 
velocity of each particle in every iteration, calculating their new values considering the 
group leader and their individual best positions. Note that CA are an embedded process 
that is called as many times as the number of PS iterations multiplied by the number of 
particles.  
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3. Application to the Metropolitan Area of Barcelona  
The Metropolitan Area of Barcelona (MAB) is composed by 164 municipalities which 
vary considerably in area, population, and employment. The city of Barcelona heads a 
complex set of mid-size and small urban systems which group urban areas and their 
hinterlands with their own functional relationships.  

The model was applied to MAB in order to simulate the allocation of urbanized land 
over the municipalities, considering an aggregate value of population and employment 
density as limits for land demand. The model was calibrated using data from the censuses 
of 1991 and 2001 for population and employment and using aggregated land use 
information derived from Corine Land Cover for the same years. The model reached a 
value of kappa of 0.427 which represents a moderate agreement. 
 

 
Figure 1. Model results for the MAB for population, employment, and urbanized areas. 

 

4. Concluding remarks 
This macroscale CA model is part of an integrated multiscale CA model that aims to 
capture different phenomena that occur at different spatial and time scales. The 
macroscale model aims to simulate the evolution of land use demand by modeling the 
areas of urbanized land at the municipality level as a function of the location of 
population and employment, considering accessibility. The values of urbanized land will 
be considered as land use demand at the microscale, and will be used as a constraint to a 
more traditional, local scale CA model 
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1. Introduction  
Since the initial transmission mechanism of Cholera was revealed by John Snow in 1854, 
the cause and spread of this disease has been under continuous research. Snow’s study 
showed how disease incidences can be linked to a source based on the spatial distribution 
of the patients. However, Snow’s work did not address the question of diffusion 
mechanisms. The predominant transmission mechanism of Cholera is via the fecal-oral 
route but in recent years several scientists have pointed toward a number of other 
transmission mechanisms that might contribute to the prevalence of the disease.  

Cholera risk factors vary and stem from multiple transmissions including interactions 
between human hosts, pathogen and environment leading to person to person 
transmission (secondary transmission) and transmission via the environment (primary 
transmission) (Hartley et al., 2006). It is possible for the toxigenic V. cholerae to survive 
in surface water for up to several years (Codeco, 2001). Especially oceans and brackish 
water seem to function as a long term biotic reservoir for cholera (Emch et al., 2008). 
Driving factors for the ecology of V. cholerae are meteorological and climate variation. 
Where environmental forcing plays an important role at the macro level, secondary 
transmission is more related to local environmental variation. 

 
 Examples of local variation that influences the spread of cholera are water sources for 

household activities (pipe – well water), food control (seafood, fish and contamination 
during preparation) (Said, 2006) and sanitation (Emch et al., 2008). Fotedar (2001) 
provided evidence that houseflies (Musca domestica) are able to carry V. cholerae. Osei 
& Duker (2008) related cholera transmission to the mechanisms of filth breeding flies 
and flood water contamination. Spatial dependency of cholera infection on the proximity 
to and density of refuse dumps was shown by  Osei et al. (2010) indicating that runoff 
from dump sites carry fecal materials to local rivers, creating a pathway for fecal 
contamination of surface water. Hartley et al. (2006) investigated the relative importance 
of the transmission factors and found a dependency on sanitation, population density and 
hygiene. We continue this work by investigating the relative importance of micro level 
transmission mechanisms by means of an agent-based simulation model. 
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There are relatively few mathematical Cholera models, perhaps because of the 
complex transmission mechanisms. A model was developed by Codeco (2001), who 
extended an existing model by Capasso for an Italian cholera outbreak. This model 
allows for long term dynamics incorporating an environmental reservoir of V. cholerae. 
A line of spatially explicit mathematical models was developed based on hydrology-
driven cholera spreading (Bertuzzo et al., 2008, Bertuzzo et al., 2009, Righetto et al., 
2010), and an age structured model was developed by Agheksanterian & Gobbert (2007). 
 

2. Cholera model 
The model presented in this research is a geographically explicit agent-based Cholera 
simulation. It is a micro scale, hydrology-driven model that differs from already existing 
ones in that it: 

‐ Includes the spread of Cholera from dumpsites by the housefly (M. domestica) 
‐ Includes runoff from dumpsites as a pathway of bacteria and feces to rivers 
‐ Includes human to human transmission of cholera  
‐ Is based on a synthetic population representing age categories, income levels and 

other population dynamics like hygiene levels and access to pipe water. 
 
The proposed model consists of four different sub-models: (i) a hydrological model for 
the transport of the V. cholerae pathogen (ii) an epidemic model (iii) a house fly model 
for modeling flies as disease carriers (iv) a human interaction model. 

2.1 Hydrological sub-model  
The hydrological model consists of three elements, an elevation raster, line elements 
representing the river branches and rainfall particles. Rainfall particles will flow downhill 
according to the elevation surface and can be transferred into carriers of feces or carriers 
of feces with pathogen.  The model assumes constant flow of water along the river 
branches. Changes in river water volume and speed of flow are not taken into account. 
Growth rate of free-living bacteria (in water) is normally negative (Bertuzzo et al., 2008). 
Because of the small area included in the simulation no “bacterial mortality” is 
implemented. 
 

2.2 Epidemic sub-model  
The model is based on the cholera transmission model from Hartley (2006) including 
hyper-infectivity. Hyper-infectivity is the fact that V. cholerae when passed through the 
gastrointestinal tract (via a human being) transfers into a short-lived hyper-infectious 
state (Hartley et al., 2006). The existence of this hyper-infectivity is associated with the 
explosive nature of some cholera outbreaks. Chance of developing the disease after 
exposure to hyper infective V. cholerae is very high. After recovery people become 
immune and this immunity lasts for at least two years (Koelle et al., 2005). For the time 
span of this simulation the immunity is permanent and no waning is considered. 
Currently the severity of the disease is not modeled although some cases are known to be 
asymptomatic. 
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2.3 House Fly sub-model  
House Fly density maps were generated around the locations known to be exposed to 
human excreta (refuse dumps and rivers). For this model, density layers were regarded to 
be static. Assumption is made that flies are able to carry V. cholerae from open dumpsites 
to surrounding areas within a critical buffer distance of 500 meters (Osei and Duker, 
2008). Within this buffer distance transmission can occur. 
 

2.4 Human interaction sub-model  
Agent unit is the individual person. Individuals are grouped into families. Prior to the 
start of the simulation families are distributed over houses, with multiple families living 
in a single building. Important attributes of families include the income level and the 
level of hygiene. Composition of families is based on Census data. Individuals are age 
specific and their behavior is based on age grouping. Individual behavior includes all 
activities that can lead to disease exposure including drinking/eating, caring for diseased 
relatives, dumping of feces and playing at dumpsites. 
 

 
 

Figure 1. The Interface of the model 
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3. Case study 
Study area is Kumasi, capital city of Ashanti Region located in south central Ghana. 
Kumasi has a population of approximately 3.5 million. The study area is located in the 
north-eastern part of the city. A severe outbreak of cholera occurred in this area in 2005 
(data: Kumasi Metropolitan Disease Control Unit).  

In the paper we will present the conceptual design and the initial findings of the 
model. Findings include the comparison of different transmission mechanisms. 
Importance of an agent-based cholera model is that the heterogeneity of the population is 
accounted for and that experiments can be conducted with intervention and changes in 
behavior of population. In future, we will continue to include behavioral changes of 
agents into this model. 
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1. Introduction  

Hazardous events which threaten people’s lives force an immediate movement of people 

wanting to escape from a dangerous area.  In their review of man-made and natural 

disasters, Wolshon et al. (2005) listed a number of hazards requiring evacuation and 

pointed out that some evacuations could only be carried out after disasters occur.  

Therefore, people need to run through evacuation drills to learn evacuation skills and to 

ensure they are familiar with the environment.  However, evacuation drills cannot 

realistically represent a real emergency situation and people may be injured during the 

practices.  To overcome these issues, evacuation models are useful for simulating these 

hazardous situations.  Models remove the risk to human safety that may be present during 

drills, and generate efficient evacuation routes for emergency plans.  One of the common 

modelling approaches is agent-based modelling; an agent-based model is a computational 

model using virtual agents to simulate independent actions, social interactions, adaptive 

processes, and goal-directed navigations.  This type of evacuation model was presented to 

study inter-relationships between individuals and groups’ behaviours (Musse and 

Thalmann 1997), steering behaviour (Reynolds 1999), and the behaviour of individuals 

with disabilities (Christensen and Sasaki 2008).  

The most common hazardous events in the built environment are related to fire 

(Federal Emergency Management Agency 2010) and this research considers agent-based 

modelling in the context of fire evacuation.  Specifically, two aspects are examined: 

human evacuation behaviour based on fire investigation reports (for more details, see 

Roan et al. 2011) and navigation algorithms, which are described here.   

Two approaches to such modelling can be identified – continuous space and grid-

based.  Simulating a high density of occupants moving around in continuous space 

models such as Social Force (Helbing and Molnár 1995) can cause issues as agents are 

restricted to moving around to avoid pedestrians and obstacles rather than being allowed 

to overlap.  In reality, according to fire reports, occupants sometimes step over others and 

cause serious stampedes in real fire situations.  Therefore, our model divides the space 

into regular grid cells and allows agents to overlap in extreme situations.   

This paper focuses on modified navigation approaches to address one of the challenges 

in grid-based models – route selection, simulating pedestrian movement using multiple 

path selections rather than a fixed route in order to model behaviour in a more realistic 

manner. 
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2.  Modified Navigation Algorithms  

The shortest path search approach and potential field approach are commonly used for 

navigation in agent-based models (Overmars et al. 2008, Bennewitz et al. 2002).  The 

shortest path search approach is used for finding a path between two nodes based on a 

weighted graph (Foudil 2009), and one of the typical algorithms – A* algorithm, which is 

a generalisation of Dijkstra’s algorithm (Dijkstra 1959, Hart et al. 1968), uses a distance-

plus-cost heuristic function to determine a list of nodes for an optimal route.  The 

potential field approach uses potential distance calculated between coordinates and 

predefined waypoints (Pelechano et al. 2007, Koh et al. 2008).  An example of this - the 

priority queue flood fill algorithm calculates distance costs by selecting the lowest 

distance cost as a prioritised node.   

Existing models, such as EXODUS
1
 model (Galea 1998), simulate interaction between 

pedestrians and environment in cell-based models but result in unrealistic movement with 

agents moving at 45 degrees as their first movement and changing directions until they 

meet an obstacle (Pelechano and Malkawi 2008).  Figure 1 shows the effect of the 

movement from STEPS2 software (Mott MacDonald 2009).   

 

 
Figure 1. A frequency of grid usage based on a potential map shows the trajectory of 

pedestrian movement. 

 

In general, the priority queue flood fill algorithm requires that agents always move to 

an adjacent cell with the lowest distance cost, and the A* algorithm selects the nearest 

node to final target if it calculates more than one node with the same lowest cost.  

Therefore, both methods return a fixed route selection that force agents to move towards 

                                                 

1
 EXODUS is developed by the Fire Safety Engineering Group at the University of Greenwich.  The 

model is based on a set of sub models for evacuation simulations and pedestrian dynamics/circulation 

analysis.   
2
 STEPS is a simulation tool developed by Mott MacDonald, UK.  It is used to simulate pedestrian 

movement under a normal or emergency condition. 
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the same grid location (Foudil 2009, Overmars et al. 2008).  Our evacuation model 

addresses these issues to simulate a more realistic pedestrian movement in a cell-based 

environment.  We propose a modified algorithm which includes additional steps and 

directions when calculating distance cost, so pedestrian movement is determined by step 

numbers and directions instead of the calculated costs.   

To validate the adapted versions of the A* and priority queue flood fill algorithms, a 

test scenario was developed (Figure 2).  The potential field approach now calculates 

distance costs from an exit to every cell and creates a potential table, and the shortest path 

search approach calculates costs from each person’s location to the destination.  In both 

cases, after calculating a full list of costs, a path is identified in terms of step numbers and 

directions from an exit to the occupant location to ensure pedestrian can reach the final 

target.  Unlike the standard approach  (Figure 2-a), multiple start-to-finish routes may be 

considered (Figure 2-b) - the result on the test scenario in Figure 2-c shows 8 potential 

routes for the yellow agent, 3 potential routes for the brown agent, and the red agent has 

34 potential routes from the starting point to the exit.  These paths are more flexible 

compared to one fixed route from the standard calculations. 

 

 
a. Fixed route calculated by the standard 

A* and priority queue flood fill 

algorithms.  The grey area shows 

individuals’ potential movement area. 

 
b. Additional steps (1, 2…etc) and 

directions (arrows) from the modified 

algorithms.  The blue area shows 

larger potential movement area. 

      
c. Agents’ trajectories and grid usage displayed from our evacuation model after 100 

runs. (one colour of trajectories represent their routes in a run; grid usage in blue 

colour shows their potential movement area ) 

Figure 2. Standard and modified navigation algorithms in a test scenario. 
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3. Implementation and Results 

A key limitation of the majority of existing building evacuation models on fire, such as 

the Gothenburg Disco fire simulation (Jiang et al. 2001), is that they only simulate agents 

evacuating from standard building exits.  However, as evidenced by our review of fire 

investigation reports (Best and Swartz 1978, Yates 1991), people sometimes hide in a 

room or stand at windows waiting for rescue.  Evacuation behaviour has been 

implemented in our model on the basis of a review of twenty fire investigation reports to 

represent a more complete and realistic test. 

A 71x21 grid scenario (grid size: 0.5m
2
) was built based on Comeau and Duval’s 

report (2000) using JAVA programming with an agent-based toolkit, Repast Simphony 

(North et al. 2007).  This report recorded a fire incident which resulted in 63 deaths and 

180 injuries in a nightclub in Gothenburg, Sweden on 28 October 1998.  The officials 

estimated that there were more than 400 occupants in the dance hall, whereas the building 

was only permitted 150 people at that time.  There were two main exits which could 

allow people out of the dance hall, but the fire started at the southeast stairway and thus 

this exit was not able to be used during the evacuation.  In addition, security bars were 

installed across the south side windows and three rooms were locked to avoid occupants 

entering during the party. 

The simulation starts from a fire alarm that forces pedestrian agents to evacuate 

towards the main entrance where they entered.  At this stage, they move in an orderly 

manner and form a queue at the exit.  When the first pedestrian discovers the smoke, 

pedestrians communicate to warn each other of this hazard situation, and then their 

behaviour changes to panic.  Therefore, pedestrians recalculate their routes according to 

individual own decisions, for example, rushing to an exit nearby, evacuating through 

alternative exits, seeking shelter in a room, or calling for helps from a window.  In 

addition, other types of agents also influence pedestrian movement – pedestrians will not 

move towards the fire; pedestrians will faint after they inhale a specific amount of smoke, 

and they either die or are rescued by fire-fighters later; a pedestrian who discovers 

another pedestrian lying on the floor will chose to go around or step over the body; exit 

agents control pedestrian flow so that pedestrians move more slowly if too many agents 

rush to one exit.  Figure 3 display grid usages of 400 agents’ movement calculated by the 

two modified algorithms after 100 runs, and it shows the difference in tracking tendencies 

– agents tend to move in a diagonal direction and walk along the wall using the potential 

field approach, whereas in the shortest path search approach agents move straight toward 

the exit.   
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(a) Priority queue flood fill algorithm 

 
(b) A* algorithm 

 
Figure 3. Grid usage maps of 400 agents’ movement after 100 runs.  The main entrance is 

at the south-west corner; some rooms and windows were locked, so occupants could not 

access them during the evacuation (white cells) 

 

4. Conclusion and Further Work 

Pedestrian movement, which is determined as a combination of modified navigation 

algorithms and pedestrian behaviour, influences overall evacuation time during the 

simulation.  This paper presents modified algorithms to overcome issues with existing 

agent-based evacuation models in which agents are often routed to the same destination 

cell.  Additionally, our evacuation behaviour, which is based on fire investigation reports, 

simulates a more realistic representation of egress selection.  With the improvement of 

navigation calculation and behaviour determination, the model results an increasing 

accuracy of total evacuation time.  

However, additional factors (such as individual height, gender, education level, group 

behaviour, pre-evacuation activities and location), which might influence individuals 

selecting egress routes, are not included in this stage of the model.  Furthermore, this 

model simplifies smoke spread as having regular speed and movement which also 

influences the result.  As shown in Figure 4, the model does not always results the correct 

location of deaths compared to the records in the selected fire report – in the fire report 43 

bodies appeared around the main entrance and other 20 were found in the shelter room.  

Therefore, additional research into fire/smoke behaviour, how fire/smoke spreads through 
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the space, how furniture influences the burning of fire and pedestrian movement, and how 

people inhale smoke should also take into consideration.   

 

(a) Priority queue flood fill algorithm 

 
(b) A* algorithm  

 
Figure 4. Percentage of death location in 100 simulations (red: very high possibilities 

where casualties appear). 
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Integrating an Agent-Based Model and a Population

Microsimulation to Explore Crime Patterns

Nick Malleson and Mark Birkin

January 28, 2011

1 Introduction

Crime is an extremely complex phenomenon. In order to understand and to predict crime
patterns it is necessary to examine the behaviour of the offender(s), the physical attributes of
the surrounding environment and the behaviour of other people who might be able to influence
the event, such as the victims or passers-by. To further complicate matters, each of these
elements are inherently local in nature; research that spatially aggregate these features will
disregard important information [1] and are not able to truly capture the dynamics of systems
that are non-linear and involve feedback [2] – such as the crime system.

For these reasons, the agent-based modelling methodology has started to be used in quanti-
tative crime research to better understand and predict crime. The methodology involves simu-
lating the individual components of a system directly (such as individual “offenders”) and hence
constructing an artificial geographic system that closely replicates the real system under study.
To take advantage of the benefits offered by agent-based modelling, BurgdSim [4] is an agent-
based model that creates a realistic representation of an urban environment and simulates the
spatio-temporal behaviour of individual offenders to predict occurrences of residential burglary.
Although the model contains individual houses, roads and burglar agents, other people who
might influence the system (e.g. residents, passers-by) are included at an aggregate level due
to a lack of individual-level data. This is a considerable drawback to the simulation because
criminologists suggest that victim behaviour is an important determinant of crime risk.

Fortunately, although there is insufficient primary individual-level data to include in the
simulation it is possible to use the technique of microsimulation to synthesise a population of
individuals from aggregate-level data sources. This paper will present ongoing research into
generating a spatially-explicit population of synthetic individuals from census data and using
this as an input into an agent-based burglary model. Although still in early stages, preliminary
results show that a lot of information about the demographics of potential burglary victims can
be gained by aligning microsimulation and agent-based models.

2 Existing Tools

2.1 The Burglary Model

BurgdSim is an advanced agent-based model of crime that simulates the behaviour of intelligent
“burglar” agents and predicts occurrences of the crime of residential burglary. The model has
been implemented in Java using the Repast Simphony library (http://repast.sourceforge.
net/) (as illustrated by Figure 1) and has also been adapted to run on the grid using National
Grid Service (NGS) compute resources. The model uses real GIS data to create a virtual
environment that consists of the following layers:

• Household layer. The household layer includes a representation of individual houses in
the study area. As the geometry of each building is available, they have been analysed in

1
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Figure 1: The BurgdSim user interface depicting a small number of burglar agents in the virtual
environment – part of Leeds in this case.

a GIS to estimate features that might influence their burglary risk, such as visibility to
neighbours or passers-by and the building structure (terraced, detached or semi-detached).

• Road network. As with the household layer, the road network is built up from real GIS
data to create a model of the network that agents can use to traverse the study area.
Different types of roads have been included (such as motorways, alleyways, minor roads
etc) and these affect the speed of travel across a road as well as the types of vehicle that
are permitted.

• Communities layer. The purpose of the communities layer is to simulate the effects that
other people (i.e. non-burglars) might have on occurrences of burglary. The layer uses UK
census data to estimate at what times a house in the community might be unoccupied,
how wealthy the residents are and how cohesive the community is.

The burglar agents themselves have been implemented using the PECS cognitive architecture
to simulate intelligence [5]. They all have a home and exhibit dynamic behaviour that changes
depending on their current circumstances. The agents require money for certain behaviours
(such as drug-use and socialising) and, in these cases, must attempt to commit a burglary first.
Therefore, although the model is able to accurately represent individual burglar agents and
the houses that they might attempt to burgle, the victims of burglary are represented in the
communities layer and are therefore homogeneous across all houses in the community. This is a
drawback for a model that is otherwise able to simulate at the level of the individual. However,
the problem is purely a result of data availability; demographic data obtained from the 2001 UK
census have been aggregated. As the following section will discuss, there is software available
that can be used to disaggregate the census and, hence, produce an estimate of the individual
people/families who live in each house.

2
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2.2 NeISS and the Population Reconstruction Model (PRM)

The National e-Infrastructure for Social Simulation (NeISS: http://www.neiss.org.uk) is a
multi-disciplinary project that aims to develop new tools and services for social scientists and
planners. The tools will enable users to run their own simulations and visualise/analyse results
as well as share them for future discovery and reuse. A tool of particular relevance is the
Population Reconstruction Model (PRM) as this can be used to disaggregate the UK census.

The PRM is a microsimulation technique which uses a combination of Small Area Statistics
and anonymised individual records to provide a synthetic population of individual people and
families for any region which has available census data. Although it is not possible to validate
the resulting synthetic population directly (as data comparable to that which the procedure
generates are not available), re-aggregation of the population show an extremely close match
to the distributions from which they are derived [3], adding confidence to the accuracy of the
results. The individual level data that are generated can be extremely valuable for subsequent
applications, such as BurgdSim, as the following section will discuss.

3 Preliminary Results

In order to improve the representation of crime victims in the BurgdSim model, the microsim-
ulation was used to generate individual-level demographic data from the 2001 UK census and
this was subsequently used as an additional input into the agent-based model. Therefore the
model could be adapted so that the wealth levels of potential victims and their occupancy be-
haviour (the times that they leave their houses unoccupied as estimated from their employment)
were no longer homogeneous across all houses in a community, but were unique to individual
houses. Therefore, when burglar agents decide which houses they will target for burglary they
take individual-level victim characteristics into account, rather than assuming that all people in
a neighbourhood are identical.

Although the procedures used to combine the synthetic population data with the agent-based
model are in their infancy, preliminary results suggest that already the improved model is able to
offer additional insights into the simulated burglary victims. Figure 2 illustrates the demographic
characteristics of the population once all people have been assigned to virtual houses in the
model and compares these to the demographics of burglary victims after a simulation has been
completed. With the exception of social group, none these attributes (age, gender and ethnicity)
are taken into account by the burglar agents during their assessment of where to commit a
burglary. Therefore these trends are a result of where in the city the individuals live as well as
the types of houses and neighbourhoods they inhabit rather than an artefact of model rules.
The managerial social group is a prime example of this. Although in the synthetic population
there are a similar number of people with managerial employment to those with manual jobs or
unemployed/students, people with managerial jobs are rarely predicted to be victims of burglary.
This is most likely because they live in places that the burglar agents are unaware of or do not
consider suitable for burglary.

Clearly further research is needed to clarify and confirm these findings, but the results suggest
that the combination of agent-based and microsimulation techniques have a lot to offer in terms
of geocomputational prediction and modelling.
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Figure 2: Demographics of the synthetic individual population generated using the PRM and
the subset of individuals who were burgled in the agent-based model.
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1. Introduction
In traffic analysis and simulation, it is usually assumed that all individuals hold a complete
knowledge of the road network and a homogenous preference in route choice, either via the
shortest (in time or distance) or least cost path. These modelling assumptions do not, it is
argued, truly represent human preference in relation to route choice. Rather, the shortest path
strategy is viewed as one factor influencing choice. Golledge describes revealed use of first
noticed path, fewest turns and shortest leg first (Golledge 1995). Conroy-Dalton (2003) also
demonstrated how individuals primarily seek to minimise the number of turns as they
proceed along their route. In a recent study, in investigating real path correlation with shortest
path, Papinski and Scott (2011) demonstrated that movement does not follow shortest length
or least time paths. It has also been found that the shortest path method performed worse than
least angular change and least turns in predicting the movement of vehicles through four
small test areas in London (Hillier and Iida, 2005).

This paper seeks to add to this growing literature on route choice methodology by testing
these measures within an agent-based simulation environment. The model, described in
Section 2, simulates the movement of multiple individual agents across the London road
network between given origin and destinations. The movement patterns created by these
agents will be compared to real movement data (described in Section 3), with initial results
documented (Section 4) and discussed (Section 5) herein. This work represents an initial yet
contributory step towards establishing a realistic route choice model for use in traffic
simulation.

2. Model Development
An Agent-based Simulation was developed to simulate the movement of individuals around
the complete London road network. The model is an extension of that described in Manley
and Cheng (2011) – a Java-based application developed using the Repast framework – with
inter-agent variation contained within the route choice mechanism applied in wayfinding.
Between a given origin and destination (restricted to those selected for testing, described in
Section 3), agents minimise their path cost according to one of four measures, these are as
follows:

 Metric: The shortest length path between origin and destination.
 Angular Change: The least cumulative angular change between origin and

destination, where deviation at each junction is accumulated.
 Turns: The least number of turns between origin and destination.
 Angular Choice: Minimising the ‘Angular Choice’ value associated with each

segment. This measure is a betweenness value scored for each segment when it falls
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on the shortest angular path between any origin and destination. This value is
calculated for all possible origins and destinations (see Turner 2001).

The former three measures described here represent an extension of the work carried out
by Hillier and Iida (2005), while Angular Choice has also been recognised as a possible
predictor of route choice (Turner 2007). Agents proceed towards their destination at a given
speed and coordinate at junctions according to a set of priority rules. Traffic regulations are
implemented also to ensure a parallel with real data, with most-notably Oxford Street – a key
road in central London – being closed to all through traffic. The resulting paths are then
exported by the simulation into an ArcGIS shape file for comparison with movement data.

3. Test Data
The test dataset is drawn from a database of taxi driver traces provided by Addison Lee Taxi
Company. This dataset contains the GPS traces of some 1.5 million trips between locations in
London over a three month period spanning December 2010 to February 2011. For the
purposes of this initial study, four test scenarios were extracted representing a range of routes
within central London. The scenarios used were as follows:

Scenario 1: Knightsbridge (SW7) to Herne Hill (SE24) on 15th February 2011 between
18:03 and 18:43.

Scenario 2: Saville Row (W1) to Highbury and Islington (N1) on 16th February 2011
between 16:01 and 16:28.

Scenario 3: Islington (N1) to Chelsea Royal Hospital (SW3) on 15th February 2011
between 20:26 and 21:01.

Scenario 4: Abbey Road Studios (NW8) to Bermondsey Wall (SE1) on 16th February 2011
between 14:16 and 15:35.

For each scenario, the corresponding GPS traces were matched to the ITN road network.
This process yielded polyline data that can be seen in the result maps below. The origin and
destination points for each scenario are passed to the agent-based simulation for the
production of test routes according to each agent’s rules.

4. Results of Simulation
The simulation yields a total of 16 datasets exhibiting the movement of agents defined using
each of the four routing mechanisms in each of the four scenarios. Maps of these results are
presented below in Figure 1, with further analysis of route similarity presented below:
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Using the route datasets yielded from the simulation, it is also possible to calculate the extent
to which the real taxi driver route is predicted by the routes of each agent. These results are
calculated on a segment by segment basis and are as follows:

POLYLINE KEY:
Black = Taxi Trace

Blue = Metric
Red = Angular Change

Orange = Turns
Green = Angular Choice

Figure 1: a) Scenario 1: Knightsbridge (Green point) to Herne Hill (Red point)
b) Scenario 2: Saville Row (Green point) to Highbury and Islington (Red point)
c) Scenario 3: Islington (Green point) to Chelsea Royal Hospital (Red point)
d) Scenario 4: Abbey Road Studios (Green point) to Bermondsey Wall (Red point)

a)

b)

d)

c)
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Route
Choice

Measure

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Segments
Matched

%
Segments
Matched

%
Segments
Matched

%
Segments
Matched

%

Length 17/136 12.5 1/123 0.8 21/141 14.9 28/169 16.6

Angular
Change

25/136 18.4 10/123 8.1 41/141 29.1 14/169 8.3

Turns 20/136 14.7 8/123 6.5 30/141 21.3 7/169 4.1

Angular
Choice

16/136 11.8 5/123 4.1 2/141 1.4 14/169 8.3

5. Discussion and Conclusions
The results generated from the simulation suggest that none of the four metrics employed to
route agents between two locations provide a full answer to the route choice conundrum.
However, as has been also noted by others, the results from these scenarios demonstrate a
clear difference between reality and the shortest path algorithm. In three of the four scenarios,
least cumulative angular change and least number of turns represented better models of
movement than simply shortest path. Where the shortest path algorithm did score favourably
(in scenario 4) this may be put down to the point at which the individual driver decided to
cross the River Thames en route to the destination. The results indicate that, in extension to
the work of Hillier and Iida (2005), angular change and number of turns are also employed as
heuristics in guiding longer journeys within the urban environment. The selection of these
measures, understood as ‘most direct’ (least angular) and ‘simplest’ (least turns) paths, align
more with human preference than expressed by existing transport models.

The performance of Angular Choice as a predictor was demonstrated to be variable during
these investigations. In the cases of scenarios 1 and 3, the agent appears to travel some
considerable distance away from the target before converging upon it. Yet equally, in the case
of scenario 4, its performance surpasses that might have been expected. The answer perhaps
lies in the distribution of high scoring segments as defined by the Angular Choice measure.
The location of these highly-attractive roads – albeit those which appear to correlate with
high traffic flows – in relation to the origin and destination appears to influence the quality of
these results. For instance, three of these higher scoring sections are Euston Road, Woburn
Place/Southampton Row and Holborn Viaduct (all featuring within the top 5% of Angular
Choice values in the London road network), all of which fall between the origin and
destination of scenario 4.

There are, of course, a number of caveats that must be offered alongside these results.
Firstly, the small sample size presented cannot be representative of the complete variation in
route choice that may be observed. In the case of scenario 2, there is a vast difference
between the actual route and those predicted by all four measures. For this piece of work no
further investigation behind the dynamic influences upon route choice (such as congestion
avoidance, knowledge of a road closure etc.) has been carried out. Furthermore, the extent to
which local traffic regulations impact on these results is equally not fully incorporated, with
only basic rules implemented at this stage. Finally, the influence of local knowledge should
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not be discounted in assessing correlation. While taxi drivers may generally be expected to
have a good knowledge of the road network, this is by no means confirmed in this situation.
Scenario 2, for example, may represent a driver wishing to avoid the busy Upper Street road
(chosen by the driver agents) yet not having knowledge of a more direct route to the final
destination.

In conclusion, this work presents an opportunity for further investigation into the
prevalence of such factors during the process of route choice. The drawbacks of this
investigation should be tackled at the next iteration and the study extended to account for
individual variation and traffic dynamics. Other measures, relating also to the city
configuration, should also be investigated for correlation with these data. Of particular note
may be that of travel time, an improvement upon shortest metric path and also widely
employed within transportation modelling. By extending this work it may be possible to
begin to draw clearer trends with regard to the most important measures employed by drivers
and how the influence of these parameters vary with space and time.
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1. Introduction  
A common issue in spatial interpolation is the combination of data measured over 

different spatial supports. For example, in the field of medical geography (Goovaerts, 
2009) information available for mapping disease risk typically includes point data (e.g. 
patients residence) and aggregated data (e.g. socio-demographic and economic data at the 
census track level). Similarly, soil measurements recorded at discrete locations on the 
ground are often supplemented with choropleth maps (e.g. soil or geological maps) that 
model the spatial distribution of soil attributes as the juxtaposition of polygons (areas) 
with constant values (Goovaerts, 2011). This paper presents a coherent geostatistical 
approach to accommodate both areal and point data in the spatial interpolation of 
continuous attributes. The procedure is illustrated using two datasets: 1) geological map 
and heavy metal concentrations recorded in the topsoil of the Swiss Jura, and 2) 
incidence rates of late-stage breast cancer diagnosis per census tract and location of 
patient residences in Michigan for the period 1985-2002 (Figure 1). 

 

2. Methodology  

2.1 Area-and-Point Kriging  
Consider the problem of estimating the value of a continuous attribute z at any location u 
within a study area A. The information available consists of set of point data collected at 
n discrete locations u {z(u); =1,…,n}, supplemented by a set of B areal data {z(vk); 
k=1,…,B} recorded for mapping units vk of various size and shape. Both point and areal 
data can be simultaneously incorporated into the prediction using the Area-And-Point 
(AAP) kriging estimate defined as: 
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where n(u) and K are the number of surrounding point and areal data, respectively. Point 
observations are typically selected based on their distance to the interpolation node u, 
while areal data are chosen according to adjacency rules; for example, all polygons 
adjacent to the polygon including u are used in the estimation.  
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Figure 1. Information available for mapping topsoil heavy metal concentration and late-
stage breast cancer incidence. (A) Soil field measurements. (C) Choropleth map of the 
main geological formations. (B) Location of 937 patient residences. (D) Choropleth map 
of late-stage breast cancer incidence rate in three Michigan counties, by census tract. 

 
The kriging weights are the solution of the following ordinary kriging system: 
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where (u) is the Lagrange multiplier, and xi=ui if i≤n(u), and xi=vi otherwise. The 
quantity ),( ji xxC

 is a point-to-point, point-to-block or block-to-block covariance 
depending on the indices i and j. Like in traditional block kriging, the block to-point 
covariances ),( ukvC are approximated by the average of the point support covariance 
C(h) computed between the location u and a set of  Pk points discretizing the block vk. A 
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similar procedure is used for the block-to-block covariances ),( 'kk vvC = 
Cov{Z(vk),Z(vk’)} and involves averaging C(h) computed between any two points 
discretizing the blocks vk and vk’. A major difference between AAP kriging and the 
related algorithms (area-to-area and area-to-point kriging) introduced recently in the 
geostatistical literature (Kyriakidis, 2004), is the availability of point data here. Thus, the 
point support semivariogram can be inferred directly from the observations without any 
need for a deconvolution of the areal semivariogram (Goovaerts, 2008). 

2.2 Binomial Kriging  
The application of AAP kriging to the medical geography case-study must account for 
the fact that the K areal data have varying degrees of reliability: these observations are 
incidence rates that tend to become unstable when the denominator (i.e. the number of 
cancer cases in this particular example) is small. On the other hand, point data can be 
viewed as an extreme case where the population size is one (individual-level data). The 
information about each cancer case, referenced geographically by its residence’s spatial 
coordinates u=(x,y), takes the form of an indicator of early/late stage diagnosis: 

            
                   otherwise  0

diagnosis stage-late if  1
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The Area-And-Point (AAP) kriging estimate is now expressed as a linear combination of 
point indicator data and areal incidence rates: 
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The kriging weights are the solution of the following system of linear equations (Webster 
et al., 1994; Goovaerts, 2010): 
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where ij=1 if i=j and 0 otherwise, ),(*)1(* iiI vvCmma  , CI(h) is an indicator 

covariance function, and m* is the population-weighted mean of the N rates (N=83 census 
tracts here). The addition of the error variance term, a/n(vi),  for a zero distance accounts 
for variability arising from population size, leading to smaller weights for less reliable 
incidence rates based on fewer cases. 

3. Results and Discussion  
Figure 2 (left column) shows the maps of chromium concentration estimated using 

alternative interpolation techniques. The reference approach is ordinary kriging (OK) that 
uses only field data (Fig. 2A). The other two maps incorporate areal data that take the 
form of average chromium concentration per geological mapping unit. These 
concentrations were used either as local means in residual kriging or directly incorporated 
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Figure 2. Maps of chromium concentration and late-stage breast cancer incidence rate 
created by alternative interpolation techniques. (A,B) Ordinary kriging. (C,D) Kriging 
that combines both areal and point data “AAP kriging”. (E,F) Residual kriging with a 
choropleth trend model. The same color scale is used for each series of three maps. 

 
into the Area-And-Point estimator. In the later case, the average of kriged estimates 
equals the mapping units’ mean (coherence constraint). The residual semivariogram 
model has a short range, leading to “bull's-eye” effect around sample points in the map 
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created by residual kriging (Fig. 2E). In contrast, the AAP map (Fig. 2C) is much 
smoother and clearly displays the lower concentrations expected on the Argovian 
formation. Differences between the three maps are the largest in sparsely sampled areas 
where the choice of a trend model becomes preponderant. In particular, incorporating the 
geological information leads to smaller estimates on the section of Argovian formation 
where no sample was collected (dashed circle in Fig. 2C) and in a small Argovian 
mapping unit that must satisfy the coherence constraint despite the presence of larger 
sampled concentrations (solid circle in Fig. 2C).  

A similar analysis was conducted for the health outcome data in Figs. 1B-D. All 
incidence maps were created using the 32 closest point indicator data and, for AAP 
kriging, the rates recorded in census tracts that share a boundary or vertex with the tract 
including the interpolation node (1st order adjacency). Incorporating census-tract 
information through residual kriging adds more details to the map but generates 
discontinuities at the tract boundaries. On the other hand, accounting for adjacent areal 
data in AAP kriging leads to a map with more compact spatial features than the indicator 
kriging map.  

The performance of the proposed approach, relatively to ordinary kriging or a 
traditional residual kriging with choropleth map trend model (e.g. constant value within 
each polygon), was assessed using jackknife. Performance criteria included the 
magnitude of prediction errors, the accuracy of the model of uncertainty, the smoothness 
of interpolated maps, and the ability to discriminate between early and late-stage cancer 
cases. Results (Goovaerts, 2010) demonstrated the overall better prediction performance 
of AAP kriging over ordinary kriging and residual kriging. In particular when sampling is 
sparse, incorporation of areal data improves the prediction accuracy while the exactitude 
property of areal data decreases the smoothness of interpolated surfaces.  

4. Conclusions 
The ability to combine data measured at various scales and over different spatial supports 
in kriging is becoming a pressing need, in particular as the field of geostatistical 
applications now encompasses social and health sciences. Whereas the first analytical 
developments of kriging clearly demonstrated its flexibility to accommodate different 
measurement and prediction supports, geostatistical analysis of a mixture of point data 
and irregular blocks has rarely been implemented in practice, mainly because of its lack 
of application in mining. Joint advances in GIS software and computational resources 
now allow the application of kriging to the complex geographies found in social and 
health sciences (Goovaerts, 2009). In addition, the recent development of binomial and 
Poisson kriging allows one to take into account both the spatial extent of the geographical 
unit and the size of the population under study within that unit (i.e. number of breast 
cancer cases) in the interpolation. 
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1. Introduction 

Models of spatial interaction such as transport, migration, commuting and trade 

usually partition space into zones, to represent the receiving and sending end of the 

interaction. When zones encompass multiple locations, the partitioning causes an 

aggregation error (Hillsman and Rhoda 1978). The aggregation error increases with 

the size of zones. Aggregation errors can cause bias (Goodchild 1979; Openshaw 

1984) and when zones are larger than a (generally unknown) threshold, models 

become invalid (Tobler 1989). It therefore seems obvious to make zones smaller 

whenever possible. In practice, however, zones often remain large for a number of 

reasons, including data availability, parsimony and computational complexity.  

There are different aspects to the aggregation error; there is the information loss 

associated with averaging variables and the loss of spatial precision – typically by 

conceptually concentrating all of a zone in its centroid. Both types of error are 

amplified when non-linear functions are applied on the aggregated variables, which 

can lead to a further model bias. One domain where non-linear use of aggregated 

variables causes a risk of bias is Discrete Choice Modelling where the utility of an 

alternative is typically an exponential function of descriptive variables. It is therefore 

well-recognized that aggregation of alternatives must account for the effect of size 

and variability of those alternatives.  However size and variability are often 

imperfectly understood and the analysis has to depend on judgment, experience and 

proxy variables (Ben-Akiva and Lerman 1985 p. 252-275). In recent years 

(micro)simulation has been established as a method for aggregation that circumvents 

many of the complications of analytical solutions (Train 2009). The location variation 

however, is not usually considered in simulation applications. For instance Train 

(2009 p. 55) suggests that alternatives with a geographical dimension require utility 

parameters specified in a log function to facilitate analytical aggregation. This paper 

intends to follow the simulation approach and extent it to the issue of geographical 

aggregation. 

2. Method 

The model that will be used to test the approach is a doubly-constrained model of 

commuting. The general doubly constrained model has the following form: 

 ij i j ijT a b P , (1) 

where Tij is interaction between origin zone i and destination j, in this case the 

number of commuting trips. Pij is the prior distribution of interaction from i to j. ai 

and bj are balancing factors, whose values are determined by the constraints 

respectively at the origin and destination zone. Balancing factors ai and bj are chosen 

such that: 
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 i ij j ij

j i

R T and C T    , (2) 

where Ri is the constraint for the i-th row and Cj is the constraint for the j-th 

column, which also implies 
i jR C  . Balancing factors are typically found by 

iteratively applying the following equations (Fratar 1954): 
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. (3) 

The prior distribution expresses the ‘gravity’ nature of the model, it is defined as 

follows: 

 ijd

ij i jP O D e


 , (4) 

where Oi is the size of origin zone i and Dj is the size of destination zone j. In the 

case of commuting, origin size is the working residents and destination size is the 

number of workplaces. dij is the distance between zones i and j and parameter β the 

sensitivity to distance. 

The doubly constrained model is linear except for the exponential function of 

distance. The simulation approach will therefore focus on that function. In the 

traditional approach the prior distribution is calculated on the basis of mean distance 

between zones: 

 ijdtraditional

ij i jP O D e


 , (5) 

where mean distance is the distance between zone centroids, with the intrazonal 

distance being approximated by the ‘internal radius’: 
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where ci is the centroid of zone i and Ai is some measure of the land area of zone i.  

This paper proposes the following alternative: 
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  , (7) 

where dijn is the n-th random sample of distance between locations in zones i and j: 

   ijn in jnd p p  , (8) 

where pin and pjn are random locations within respectively zones i and j. The random 

locations are drawn from a uniform spatial distribution: a random location in a zone is 

found by a series of geometrical operations on the polygon that outlines the zones; 

First the polygon is decomposed into triangles using a dedicated triangulation library 

(Shewchuk 1996); Next one triangle is randomly selected using the area of each 

triangle as the weight; Finally a point is found within the selected triangle by applying 

the algorithm of Turk (1990). 

3.  Case study and results 

The model is applied on commuting data of England as measured by the U.K. Census 

of 2001 at the level of Standard Table Wards (‘wards’ from here) as well as Local 

Authority Districts (‘districts’ from here). The data used is available from Centre for 

Interaction Data Estimation and Research (http://cider.census.ac.uk ). Wards form the 

most detailed geography at which Census commuting data is made available. Districts 

present a more aggregated geographical level at which practical policy analysis is 

often carried out.  There are 354 districts and 7932 wards in England.  The digital 

boundaries (as polygons) of districts and wards come from UK Borders 
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(http://edina.ac.uk/ukborders/),. The centroids of zones are calculated as their 

geometric centre. Fig. 1 presents the ward and district geographies. 

The model has been calibrated twice, with both versions of priors (i.e. equations 5 

and 7). A bracketing approach called Golden Section Search (Press 1992) was 

followed to find the value of β that minimized the following error: 

     
2

,

model census

ij ij

i j

T T   , (9) 

where δ is the discrepancy between modelled and actual (Census) commuting 

matrices. 

Table 1 gives estimated values for β and the associated error δ. It shows that for the 

case of wards it makes little difference which approach is chosen, but for districts 

there is a marked difference in performance where the simulation based model 

performs 35% better than the traditional model. The graphs in fig. 2 depict the trip 

distribution as a function of distance and confirm the difference in performance.  

 

Figure 1. Study area England at district (left) and ward (right) levels of aggregation. 

Geography Model β δ(*10
9
) 

Wards Traditional 0.34 2.99 

Wards Simulation 0.36 2.87 

Districts Traditional 0.37 90 

Districts Simulation 0.31 58 

Table 1. Calibration results and errors. Note that errors are only comparable between models applied at 

a common geography. 

  

Figure 2. Census and modelled trip distributions. Note zone sizes distort distribution patterns 

particularly at the district level. 
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4. Conclusion 

This paper follows up on the recommendation of Train (2009) and others to employ 

simulation when faced with discrete choice models for which analytical models are 

not feasible or too restrictive.  The case study is carried out on the generic doubly-

constrained model, which is readily generalisable to more sophisticated random utility 

models. 

 By comparing two cases that differ in the level of spatial aggregation it became 

clear that location sampling does significantly reduce the error caused by using 

average distances. At the fine scale of wards the effect of error reduction is small 

although still apparent. At the coarser scale of districts however, simulation would 

seem essential in future models to contain the aggregation error. 

Simulation can be a mechanism for reliable modelling on the basis of coarse scale 

data when fine scale data is not available. An example of such data is the UK Census 

commuting data that only offers thematically refined data at coarse spatial scales, for 

instance commuting patterns specified by industry and socio-economic group which 

allow segmented modelling of commuter behaviour.  
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1. Introduction 
Kruger National Park, South Africa, provides 19,485 km2 of protected habitats for the unique species of 
the African savanna, several of which are endangered. For the last forty years annual aerial surveys to 
monitor large herbivore populations have been conducted. These have been used to understand 
population trends and the environmental factors and management actions that influence herbivore 
density and distribution patterns. From 1980-1993, the whole park was surveyed annually, but this was 
costly and time consuming. In 1998, the park-wide census approach was replaced by a sampling strategy 
whereby the number of animals is recorded along 800 m wide East-West transects, spaced at intervals of 
2.5-5.6 km (Kruger et al. 2008). However, such strip transects leave “gaps” in the data spatially. The 
park currently use the Distance method (Thomas et al. 2004) but several assumptions of the method are 
not met especially for rare species or species that tend to be clustered in space. 

Geostatistical methods at first glance might seem ideal for populating the gaps in survey data and for 
estimating the total numbers of each animal in the park in a given year. However, the histogram of 
animal count data for the park is usually highly positively skewed, especially for the rarer species or 
those that tend to cluster spatially. The histograms tend to approach the Poisson distribution. This 
hampers the estimation of the variogram by the traditional method of moments. Kerry et al. (2010a) 
compared an Auto-Indicator kriging approach (Goovaerts, 2009) and Poisson kriging (Monestiez et al. 
2006) as potential methods for populating the data gaps between transects and to create continuous 
surfaces of species abundance. It was thought that an auto-indicator approach could be used to 
efficiently compute and model variograms for numerous thresholds representing each count. However, 
the study showed that variograms for the rare high counts were pure nugget and so the number of 
thresholds had to be reduced. This meant that the number of large counts of each animal was under-
estimated. Also, the nature of the data meant that unless the data were preprocessed to migrate the data 
to a grid, there were no zero counts and this meant that low counts were over-estimated. In contrast to 
the Auto-Indicator approach, with and without pre-processed data, two Poisson approaches produced 
markedly smaller, and sometimes an order of magnitude smaller, mean absolute errors (MAEs) in cross-
validation. An initial investigation showed that incorporating environmental data into a simple 0/1 
Indicator approach reduced MAEs slightly. Here we illustrate a method of incorporating environmental 
data into the Poisson kriging approaches and compare the errors associated with this to the errors when 
no environmental data are included. 
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2. Methods 
Poisson kriging of count data was performed using two types of denominator:  

(1) observational area (ratio = spatial density, Fig. 1a)  
(2) total number of animals in a given area (ratio =  proportion, Fig. 1b).  

                                                     

 

 
Figure 1. Calculation of (a) spatial density from 800 m wide transect data for Poisson approach (1) and 
(b) proportion of each animal  from 5 km long blocks of the 800 m wide transect data (e.g. number of 
impala/total number of all animals in 5km by 800m block) for Poisson approach (2). 

(a) 

(b) 
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Both Poisson approaches result in sightings of rare animals in sparsely populated areas (i.e. small 
numbers) being down-weighted for variogram computation and kriging. However, Approach (2) is only 
suitable for accurately mapping the distribution of individual species in the park. 
 
The following observational area/population-weighted estimator adjusts for the small number problem: 
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where N(h) is the number of pairs of areas (vα ,vβ) whose observational area/population-weighted 
centroids are separated by the vector h and m* is the observational area/population-weighted mean of 
the N area rates. The usual squared differences, [z(vα)-z(vβ)]

2, are weighted by a function of their 
respective observational area/population sizes, n(vα)n(vβ)/[n(vα)+n(vβ)], which gives more importance to 
more reliable data pairs based on large observational areas/large total counts of animals (Monestiez et al. 
2006, see also Kerry et al. 2010b).  
 

The animal density/proportion and the associated kriging variance for a location X are estimated as: 
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The kriging weights (λi) and the Lagrange parameter µ(X) are computed by solving the “Poisson 
kriging” system: 
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where δij=1 if i=j and 0 otherwise. The covariances are estimated from the results of a deconvolution of 
the model fitted to variogram (1), see Goovaerts (2008). The “error variance” term, m*/n(vi), leads to 
smaller weights for rates measured over smaller areas/populations. 

Various environmental data (Figure 2) was incorporated into the mapping by kriging the residuals 
from a Poisson regression between environmental and animal data. 

Leave-one-out (LOO) cross-validation was used to assess the relative performance of the different 
methods for estimating counts of all species, and of representatives of the key feeding groups grazers, 
browsers and mixed feeders such as giraffes, impala and zebra for the whole park. Rarer species or those 
species that tend to cluster in herds were also investigated. 

 
 

GeoComputation 2011

71

Session 2A: Geostatistics



 

E
cozones 

G
eology 

Landscape 
Landsystem

s 
H

erbaceous 
B

iom
ass  

(kg ha
-1) 

W
oody 

cover (%
) 

and rivers 

S
im

plified 
geology 

 
 

 
 

 
 

 

 
 

 

 

H
endry 

(2004) 
V

enter 
(1990) 

G
ertenbach 
(1983) 

V
enter 

(1990) 
S

m
it 

(2007) 
B

ucini et a
l. 

(in press) 
D

erived 
from

 V
enter 

(1990) 
 

Figure 2. Environmental Data used in Poisson Regression 
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3. Results and Discussion 
Table 1 shows that for estimating numbers of giraffe, impala and zebra, Poisson approach (1) yielded 

smaller errors. It also created patterns that are more sensible than those of Poisson approach 2 when 
compared to the observed counts (Figure 3). The MAEs indicate that approach (1) produces its best 
estimates when there are more animals i.e. looking at counts of all animals, or more abundant animals 
such as impala. Poisson approach (2), however, leads to best estimates for the rarest animals or those 
that tend to occur in isolated herds. The effects on MAEs of incorporating environmental data such as 
biomass, tree cover, geology and ecotypes into both Poisson approaches (results not shown here) will be 
discussed in the presentation. 
 

Table 1. Mean Absolute Errors (MAEs) from Leave-One-Out Cross-validation for Poisson kriging using 
spatial density (approach 1) or proportion of animals (approach 2). 
 

 MAE 
Data Poisson 

approach (1) 
Poisson 

approach (2) 
All animals 1998 0.0528 * 
All animals 2000 0.0401 * 
All animals 2001 0.0463 * 
All animals 2005 0.0448 * 

Key feeding groups   
Giraffe 2000 0.1337 0.1481 
Impala 2000 0.1668 1.3791 
Zebra 2000 0.2630 0.3909 

Rarer species   
Elephant 2000 0.4494 0.0996 

Kudu 2000 0.6264 0.1142 
Waterbuck 2000 0.7747 0.0516 
Warthog 2000 0.8165 0.0460 

Wildebeest 2000 0.3133 0.1290 
White rhino 2000 0.5348 0.0850 
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Figure 3. (a) Observed counts of zebras in 2000 and kriged maps of counts produced by (b) Poisson 
approach (1), and (c) Poisson approach (2). 
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1. Introduction   
 
Radio signal path loss is a particularly important element in the design of any radio 

communication system or wireless system, and it is necessary to be able to determine the 
levels of the signal loss for a give radio path. The more accurate model the better decision 
making will occur for the network rollout, planning and optimization. The radio signal path 
loss could be estimated by many elements of the radio communications system in particular 
the transmitter power, and the antennas, especially their gain pattern, height, azimuth and also 
are highly influenced by clutters (land use), terrain height and morphology, spatially related 
parameters. Okumura-Hata empirical model, which has many parameters, is the most 
common model for prediction and estimation of this complicated phenomenon. 

On the other hand, geostatistical techniques offer interpolation methods for describing the 
continuity of spatially/temporarily variable data which is essential feature of many natural 
phenomena. Over the last decades, this theoretical framework has been successfully applied 
in other type of spatial problems (Konak, 2010). As it is mentioned above signal path loss is 
highly influenced by spatial parameters, therefore geostatistics has high potential to be 
implemented for such purpose (Arpee J. et al., 2000).  
There are few researches conducted using geostatistical techniques for modelling wireless 
propagation models. In a recent paper, Konak (2009) reports that ordinary kriging is competitive 
with radial basis ANNs to estimate the signal-to-noise ratio in cellular wireless networks. Konak in 
2010 extends the ordinary kriging approach proposed in 2009 by considering path loss due to 
obstacles and other factors in indoor environments. In this paper we have compared the result of 
different spatial and non-spatial interpolation techniques with Okumura-Hata empirical 
model to evaluate geostatistical analysis capability to find a way of having more accurate 
mobile coverage models. As the result, this research will help us to have RF path loss trend 
estimation which is extracted from sampled data to describe data variability across the entire 
cellular system areas.    

The area of interest is a city in west of Iran. Okumura-Hata, Inverse Distance Weighting 
(IDW- a non-spatial interpolation technique) with different power and number of neighbour 
and different type of kriging (ordinary & universal) with different semi-variogram model and 
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number of neighbours are used to model RF propagation in study area. Finally, the result of 
all interpolation methods are compared using the check points of real data.  

 
2. Research background 

 
In this section, a brief description of Okumura-Hata empirical model and also geostatiscal 

interpolation technique, kriging, are presented. 
 
2.1. Okumura-Hata empirical model 

 
Path Loss (L) is a measure of the reduction in power density of an electromagnetic wave 

as it propagates through space (Konak, 2010). The method analyzes raw RF power data that 
is collected by drive testing a sample of roads in a cellular system. Radio Propagation 
predictions are mainly used to demonstrate how the mobile signals are scattered in the 
environment as well as how strong the signals are in different places. however, there are 
various factors influencing the radio propagation prediction accuracy such as reflection, 
diffraction, scattering, transmission, refraction, etc.  

This method is used for cellular system planning and management, the one which is used 
is the standard macrocell model which is based upon the Okumura-Hata empirical model 
with a number of additional features to enhance its flexibility. The model has a number of 
features that enhance its flexibility and accuracy such as the inclusion of clutter offsets and 
heights and the use of diffraction. The Okumura-Hata model has the following validity range: 

− The distance from the site between 500 m and 30 Km 
− Antennas height in the range of 15-200m 
− Receiver heights in the range of 1-10m 
− Frequency: 150…1000 MHz and 1500…2000 MHz 
− MS height: 1 m…10 m 

The data needed for computation using this data are in two categories, (a) data related to the 
antenna such as antenna gain, pattern, height, azimuth, power, etc (b) mapping data including 
terrain DTM and terrain clutter (land use). 

The model has a large number of parameters and options which may be selected or 
calibrated by the user in order to obtain a close representation to measured propagation data. 
Since network simulations are very time consuming, the choice of the macrocell propagation 
model is a trade off between prediction accuracy and computational efficiency. For this 
reason the standard Okumura-Hata macrocell model has been chosen. The basic equation 
used in the path loss calculation is given as follows (Equation 1, Table 1) (Aircom Tech Doc, 
1999): 

 
PL(d) = K1 + K2.log(d) + K3.Hms + K4.log(Hms) + K5.log(Heff)+ K6.log(Heff).log(d) + 

K7.Ldiff_Losses + Lclutter_Losses      (Equation 1) 
Where: 
 
k1 & k2 Intercept and Slope. These factors correspond to a constant offset (in dBm) and a 

multiplying factor for the log of the distance between the base station and mobile. 

k3 Mobile Antenna Height Factor. Correction factor used to take into account the 
effective mobile antenna height. 

k4 Okumura-Hata multiplying factor for Hms. 

GeoComputation 2011

77

Session 2A: Geostatistics



k5 Effective Antenna Height Gain. This is the multiplying factor for the log of the 
effective antenna height. 

k6 Log (Heff)Log(d). This is the Okumura-Hata type multiplying factor for 
log(Heff)log(d). 

k7 Diffraction. This is a multiplying factor for diffraction calculations. A choice of 
diffraction methods is available. 

PL the path-loss in dB 

d the distance between the BS and the MS in meters 

hMS the height of the MS in meters 

heff the BS effective antenna height in meters 

Diff_Losses the diffraction losses and Clutter_Losses are the losses associated with the clutter 
types. 

 
Table 1 - Model Parameters 
 

2.2.  Geostatistics 
 
Kriging is a geostatistical technique to interpolate the values of a random 

spatially/temporarily field value in an unobserved location from observed nearby locations. It 
was developed by Krige (1951) and Matheron (1963) to accurately predict ore reserves from 
the samples taken over a mining field. There are different types of kriging such as ordinary, 
universal, indicator, disjunctive kriging [Krivoruchko K., 2001]. In Kriging, the prediction is 
based on semivariogram which is function of distance and is highly dependent of researcher’s 
experience (Yoo S., 1994). There are different models which are used for modeling 
semivariogram such as spherical, gaussian, exponential and circular (Zimmerman DL et al., 
1991)  

 
3. Method 

 
This paper is a part of an ongoing research to test and use the capability of geostatistical 

analysis for coverage predicting, simulating and tuning. The goal of this research is to test 
different interpolation techniques in coverage prediction. Method presented here, analyzes 
raw data that is collected by drive testing a sample of roads in study area (Figure 1). First this 
data were processed to eliminate gross errors and duplicate values. Here 58029 point data are 
collected. 
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Figure 1- raw data that is collected by drive testing a sample of roads in study area 

Different continuous surface are created using different interpolation methods. To 
compare the interpolation methods used here, we have selected 15417 as check points, to be 
able to compare the predicting values of different type of techniques. Although kriging, could 
be evaluated by error prediction analysis which is one of the advantage of this technique but 
we used check points to be able to compare the result of this technique with non-spatial 
interpolation technique. To have check points in different locations, they are selected by 
creating a grid network (Figure 2). So 42612 points are used for prediction and 15417 points 
are used as check points. 

 

 
Figure 2- Check points selection using grid network 

After the steps of data preparation, different surface using Okumura-Hata model with 
optimum factors and different interpolation methods are created. The interpolation methods 
used here are Inverse Distance Weighting (IDW) with different power and number of 
neighbours, ordinary kriging and also universal kriging with gaussian, spherical, circular and 
exponential models for semivariogram with differnt number of neighbors. In following figure 
(Figure  ٣ ) surfaces created by some of used methods are depicted. 
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Figure 3b- Surface Created by Universal Kriging 

 
 
 
 

 
 

Figure 3a- Surface Created by Ordinary Kriging 
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Figure 3c- Surface Created by Okumura-Hata Model 

 

Figure 3d- Surface Created by IDW 
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For the result comparison, we have used check points. Prediction values for check points are 
extracted from each surface and the difference with actual value are computed. The root mean square 
is used to compare the methods (Table  ١ ). 

 
Table  ١ - numerical result for comparison of best fitted surfaces of each method 

 
 
4. Result 

 
The outlines of the results of this study are listed as below: 

- Kriging methods predict coverage having acceptable error and are even more accurate 
than Okumura-Hata with much less than input and computation 

- Okumura-Hata methods are more accurate than IDW. 
- Surfaces created by universal kriging demonstrate, exponential model for semi-

variogram is best fit for coverage prediction among the tested ones. Results show the 
suitability of exponential and spherical for semi-variogram are almost same and place 
after exponential model and the last one is gaussian model 

- Ordinary kriging is a little  more accurate than universal kriging with exponential 
semi-variogram but the computational time is much more than universal kriging 

- Among tested models, considering tradeoff between accuracy and computational 
time, universal kriging having exponential semi-variogram is best one.  
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1. Introduction  
The trend towards spatially disaggregate modelling and computation has manifested itself 
across a host of scientific fields, particularly that of transportation (Shaw and Wang 2000). 
With the proliferation of individual-level datasets describing the detailed activities of 
households and their constituent members, it is possible to analyze human movements at a high 
degree of precision (Goodchild 2010). Moreover, these data are becoming better in quality as 
transportation surveys increasingly take advantage of digital technologies (e.g. GPS receivers) 
to effectively capture information on people’s daily activities at spatially dispersed origin and 
destination locations (Stopher et al. 2007). 

However, despite these advances, travel survey data are not without quality issues (Wolf et 
al. 2001).  First, many daily activity travel surveys still use methods that require a sampled 
individual’s reported origin or destination location to be physically geocoded. In other words, 
the survey data capture method (e.g. paper survey, telephone interview) does not directly 
collect the exact spatial coordinate of an activity origin and/or destination (e.g. 123 Pine Street, 
Sunnyville, FL, 31234).  Potential exists for origins and destinations of reported trips not to be 
geo-referenced, perhaps due to mis-reported information, and/or inconsistencies in spatial 
address databases, which can limit the usefulness of the survey data.  Given an account of trips 
made by an individual during a typical day, the analyst may be able to confirm that a survey 
respondent took a particular trip, but may be unable determine the exact origin and/or 
destination of the trip.  From a transportation analysis standpoint, this is a serious problem 
because it in effect renders the record useless, especially in cases where analyzing the chain of 
activity locations is of interest (Hensher and Reyes 2000, Horner and O'Kelly 2007). 

This paper explores a computational approach for recovering unlocateable activity locations 
from travel surveys. Derived from recent work in time geography, the method reconstructs the 
most probable location(s) of missing origins and destinations that were unable to be determined 
via georeferencing procedures.  We adapt a recently developed probabilistic time-geographic 
approach (Downs 2010) that incorporates individuals’ known origin and destination locations, 
and the time they spent at these (and the unmatched) locations.   

2. Background and Method  
Facilitated by improvements in computational power and geographic information systems 
(GIS) technology, there has been renewed interest and subsequently many recent developments 
in the field of time geography. Haagerstrand’s pioneering work of the 1970’s, which was re-
visited and extended in the 1990’s by Miller and others, set the foundation for the sustained 
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stream of research that continues today (Haagerstrand 1970, Miller 1991, Kwan 1998, 
O'Sullivan et al. 2000). Time geographers concern themselves with examining and applying the 
classical constructs (e.g. space time prisms, cones, geo-ellipses), and research has also 
proceeded along several other related lines including addressing uncertainty and representations 
of space, including adapting metrics for use on networks (Kuijpers et al. 2010, Neutens et al. 
2011).   

One recent area of interest has been in the idea of developing a ‘probabilistic’ time 
geography (Downs 2010, Winter and Lin 2010, Winter and Yin 2010).  In work by Downs 
(2010), the traditional geo-ellipse representation is improved to visualize likely area(s) a mobile 
object could have travelled given a time budget.  Known as time geographic density estimation 
(TDGE), the method does not focus solely on the outer polygon depicting the maximum space 
that could be consumed (i.e., the geo-ellipse), but rather it incorporates a form of data 
smoothing to interpolate a surface within the polygon showing the most likely places that 
object could have been located.  Of course, this likelihood is determined not only by the 
individual’s available travel budget but also by their other known points. 

Per Downs (2010) the formulation for the TDGE estimator is  
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where )(ˆ xft is the time geographic density estimate at any point x in a map and G is a distance-
weighting function of the geo-ellipse. The number of control points is indicated by n, with each 
point having a time stamp t. Sequencing of points is governed by the ordering of subscripts i to 
j.  Effectively this formulation in equation 1 fits a distance-weighted geo-ellipse function to 
each consecutive pair of control points in a space-time path.  In this paper we adapt this method 
to be used with travel survey data, where the interest is in identifying missing origin and 
destination locations, given other known spatial and temporal information about a respondent’s 
activity locations.  
 
 

3. Research Structure  
We provide a detailed review of time geography, including related developments with respect 
to uncertainty and probabilistic issues. We also discuss disaggregate travel methods in regards 
to transportation surveys and activity analysis. From there, we modify the TGDE approach to 
work with empirically observed travel survey data from a smaller Midwestern U.S. city.  
Several adaptations to TDGE are suggested, including incorporating a traditional transportation 
network structure into its estimation (Neutens et al. 2008).  We also compare various 
approaches for re-creating missing survey points by experimenting with alternative weighting 
functions as well as exploring the whether using more than two known points does a better job 
of predicting intermediate unknown locations.  To get at the idea of ‘better’ we can simulate 
missing data simply by dropping out a known intermediate point between two other known 
activity points, use the TDGE technique to ascertain how well we predict the known point.   
This will act as a calibration procedure to indicate the preferred combination of parameters for 
applying TDGE to recover missing destination locations.  
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1. Introduction 
With the rapid increase in the use of location-acquisition technologies (GPS, GSM networks, 
etc.), large amounts of spatio-temporal datasets will be accumulated. In different application 
domains, we need to represent moving entities, i.e. collect the successive location positions of a 
given entity, which form the trajectory for that entity. The key idea is that moving entities are 
described by a sequence of positions in a k-dimensional space. Each position in the sequence 
represents the entity’s location at a given time. Thus, a trajectory for a moving entity in a k-
dimensional space is viewed as a line in a k+1-dimensional space, where time is an additional 
dimension. 

In many applications, there is a need to analyze the dynamics of moving objects in order to 
support spatiotemporal decisions. A significant type of query in these applications is the k-nearest 
neighbours (kNN), which finds the k trajectories more similar (closest) to a given trajectory. For 
example, in a football match, to identify a player with the most similar trajectory to Ronaldo’s, in 
order to substitute a player, without changing team’s strategy; or in a tourist guide application, to 
find the k most similar bus trajectories to a given touristic route; or to search for the k most 
similar hurricanes trajectories to Katrina’s. 

The choice of a distance function, which best represents the degree of similarity, for 
trajectories in a metric space, depends on the application domain in question. Some of the most 
used metric functions for moving objects are: the Euclidean Distance (ED), the Manhattan 
Distance (MD) and the Edit distance with Real Penalty (ERP) (Chen 2005). 

In order to have efficient similar searching in metric spaces, several metric data structures 
have been proposed, which can be classified as cluster-based or pivot-based (Samet 2006; 
Chávez et al. 2001). Some of these metric data structures are: Recursive Lists of Clusters (RLC) 
(Mamede 2005; Sarmento 2010) and Metric-Tree (M-Tree) (GBDI 2009; Ciaccia et al. 1997). 
Both of these metric data structures are dynamic, implemented in secondary memory and seek to 
minimize the number of distance computations in a similarity search. The RLC is cluster-based, 
while the M-tree has features common to both, pivot-based and cluster-based. 

The main goal of this research is to have a trajectory storage method, based on metric data 
structures, that speeds up the search by similarity. In the remainder of this paper we will, firstly, 
describe SimTraj, which is a trajectories storage method in metric spaces that provides efficient 
kNN searches. Then, we present the evaluation of the performance of SimTraj method in kNN 
searches. This evaluation involves the two metric data structures, RLC and the M-Tree, in two 
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metric spaces of hurricanes trajectories. The evaluation involves the two metric data structures, 
RLC and the M-Tree, in two metric spaces of hurricanes trajectories, using the distance 
functions, ERP and ED, as similarity functions. 

 
 

2. SimTraj 
SimTraj is a trajectories storage method in metric spaces, which has a distance-based indexing. 
This means that the trajectories are grouped into partitions, based on distances, between a set of 
selected trajectories and the remaining trajectories. At search time, the space partitions enable the 
discarding/retaining of some subsets, without additional calculations of distance, based on the 
metric properties of the similarity function. This method is a combination of two data structures, 
RLC (distance-based partition), which organizes the trajectories in clusters based on distance, 
and an in-memory structure (frontline), which stores the pointers to the clusters where the 
trajectories are stored, as showed in Figure 1.  
 

 
 

Figure 1. SimTraj Diagram 
 
 
 

The frontline is used to provide efficient updates in the SimTraj. The distance-based partition 
is used to provide efficient similarity queries, and is implemented with recursive lists of clusters 
(RLC). A  RLC cluster is a triple <c, r, I>, where c is the centre, r the radius and I the interior of 
cluster. The interior is composed by elements whose distance to the centre is a value equal or less 
than the radius, and may be implemented as a list of clusters or as a leaf, depending on the 
number of elements and on the RLC capacity. Figure 2 shows how the trajectories are stored in 
the SimTraj method. In this figure, it is possible to see in (a) the partitions of trajectories in the 
space, and in (b) the organization of these trajectories in SimTraj, which has a RLC with capacity 
five and with variable radius at clusters.  
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Figure 2. Organization of trajectories in SimTraj 
 
 
 

In SimTraj, the insertion of a new trajectory consists in searching for a RLC cluster, in which 
the distance between the new trajectory and its center is less than or equal to its radius. If it is not 
found, a new cluster is created. Otherwise, one of two situations can happen: (1) the cluster is a 
leaf; (2) the cluster is a list of clusters. In (2) the process is applied recursively until it reaches (1). 
In (1), the first step is to verify if the leaf is not full (RLC capacity). If this is the case, the new 
trajectory is stored in the leaf. Otherwise, the leaf is transformed into a clusters list and the 
trajectory is allocated in one of the clusters. Finally, in both cases, the pair composed by the 
trajectory and the pointer to the RLC cluster is added to frontline. 

The kNN query is based on a range query (RQ). To perform a kNN search, k elements are 
obtained from the RLC iterator and sorted downwardly by the distance to the query trajectory. 
Then a RQ is realized based on the query trajectory and on the largest distance found, which will 
be used as the query radius. The range query consists in iterating all RLC clusters, and, for each 
cluster, in finding the trajectories that lie at a distance from the query trajectory that is lower than 
or equal to a given value (query radius). Using the properties (triangle inequality and symmetry) 
of the metric function, many of these groupings of trajectories can be immediately discarded or 
retained, without additional calculations. 

To remove a trajectory, frontline is consulted in order to obtain the pointer to the RLC cluster 
that contains the trajectory. When removing from the RLC, one of two situations can happen: (1) 
the trajectory is the center of a cluster; (2) the trajectory is stored in a leaf. In (1), the cluster is 
removed from the list, and all trajectories in this cluster will be inserted at the list of remaining 
clusters. In (2), the trajectory is removed from the leaf. In both cases, the pair associated to the 
removed trajectory is deleted from frontline. 

In SimTraj, an update of a given trajectory (a new position in xy-plane at a given time) 
consists in removing the trajectory followed by the insertion of the updated trajectory.  

It should be noted that insertions and deletions of trajectories that lead to a change in the 
organization of the remaining trajectories (e.g., the removal of a cluster and the reinsertion of its 
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elements, or the conversion of a leaf in a list of clusters), require an update in frontline, for each 
trajectory, which changed its location in RLC. 

A more elaborated description of the RLC can be consulted at (Mamede 2005). 
 

3. Experiments 
In this section, we present an experimental evaluation realized in SimTraj, in order to assess the 
efficiency of k-NN searches (with k=1 and k=5). This evaluation involves two mechanisms in the 
distance-based partition of SimTraj. These techniques are the use of two metric data structures: 
RLC and M-tree.  

The metric spaces, used in the evaluation, were defined on a hurricanes dataset, which 
contains all the Atlantic tropical hurricanes between 1851 and 2009 (Unisys 2010) (Figure 3 
illustrates 2005). 

 
Figure 3. Atlantic tropical hurricanes (year 2005) 

 
 
In our experiment, the measure of the similarity between two trajectories is based on two 

distance functions (ERP - Edit distance with Real Penalty, and ED - Euclidean distance). These 
functions give real values, which represent the degree of similarity between the trajectories. The 
smaller the function result is, the greater the similarity between the trajectories. ED is Lp-norm 
with p = 2, and ERP can be viewed as a variant of L1-norm, which can support local time 
shifting. To cope with local time shifting, ERP uses an idea from the string edit distance, which 
represents the number of insert, delete, or replace operations needed to change a string into 
another string. Note that, in the string edit distance, an added symbol is referred to as a gap 
element. ERP uses real penalty between two non-gap elements, but a constant value for 
computing the distance for gaps (origin in the x-y plane). These two functions are metric, as 
demonstrated in (Chen 2005). 

Let S = <(t1s,x1s,y1s), …, (tns,xns,yns)> and T = <(t1t,x1t,y1t), …, (tmt,xmt,ymt)> be two trajectories, 
let p = (xp,yp) and q = (xq,yq) points in x-y plane and let d be the distance between two points p 
and q in the x-y plane, denoted by d(p,q).  

The Euclidean distance between S and T, denoted by ED(S,T), is defined in Equation 1. This 
function can only by applied to trajectories that have the same length (n=m). As the length of 
both trajectories has to be the same, the smaller trajectory needs to be extended. This extension is 
performed by inserting the start/end point of the small trajectory (point in x-y plane) at the 
start/end of the sequence, using the respective times of the trajectory with the largest length. 

 
ED(S,T) = √Σ1..n((xit-xis)2 + (yit-yis)2) 

 
(1) 
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The Edit distance with Real Penalty between S and T, denoted by ERP(S,T), is defined in 

Equation 2. 
 
     ERP(S,T) = Σ1..m d((xit,yit),(0,0)),  if n = 0; 
 
     ERP(S,T) = Σ1..n d((xis,yis),(0,0)),  if m = 0; 
 
     ERP(S,T) = min {ERP(<(t2s,x2s,y2s), …, (tns,xns,yns)>, <(t2t,x2t,y2t), …, (tmt,xmt,ymt)>)  
         + d((x1s,y1s), (x1t,y1t)), ERP(<(t1s,x1s,y1s), …, (tns,xns,yns)>, <(t2t,x2t,y2t), …, (tmt,xmt,ymt)>) 
         + d((0,0), (x1t,y1t)), ERP(<(t2s,x2s,y2s), …, (tns,xns,yns)>, <(t1t,x1t,y1t), …, (tmt,xmt,ymt)>) 
         + d((x1s,yst),(0,0))}, otherwise 

 

(2) 

RLC and M-Tree were parameterized in order to have the most efficient performance in the k-
NN searches. While the values of RLC parameters come from experimental tests, the values of 
the M-Tree come from the results obtained in (Ciaccia et al. 1997).  

In our experiment, we perform 37 (25% of the size database) kNN, for each k (k =1 and k=5). 
The trajectories chosen to perform the searches were chosen randomly from the dataset. 

For each search, we calculated the number of disk accesses (SR), the execution time (ET) and 
the number of distance calculations performed (SD). Figures 4 and 5 show the average results 
obtained for each search in 1NN and 5NN, respectively.  

 

 
 

Figure 4. 1NN Searches using ERP and  
ED at both Data Structures 

 

 
 

Figure 5. 5NN Searches using ERP and  
ED at both Data Structures 

 
 
 
We can conclude that the RLC and the M-Tree are very competitive. However, the RLC is 

better at the number of distance calculations and at the execution time. The M-Tree has better 
values in disk accesses. 

Based on disk accesses, one could imagine that the M-Tree would be unbeatable. However 
such was not true. This happens due the fact that the M-Tree only accesses the disk once, but 
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performs a higher number of distances calculations than the RLC. Similar results with a different 
trajectories dataset were obtained in (Afonso et al. 2011). 
 
5. Conclusions and Future Work 
In this work we present a trajectories storage method (SimTraj) for efficient similar search in 
metric spaces. The choice of the RLC data structure to distance-based partition from SimTraj 
was based on experimental tests performed on two data sets, hurricanes and buses. 

An ongoing work is the evaluation the dynamism of the SimTraj. As future work, we aim to 
explore some interesting scenarios related to the comparison of metric data structures with non-
metric ones, as well as the evaluation of SimTraj in a concrete application. 
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1 Introduction

Tests of space-time interaction detect clustering of events in space and time in excess

of “any purely spatial or purely temporal clustering” (Kulldorff, 1998, pg. 58). These

tests are widely employed in studies of crime (e.g. Knox, 2002; Grubesic and Mack,

2008) and disease (e.g. Petridou et al., 1996; Rogerson, 2001). By simultaneously

considering both the spatial and temporal dimensions of the event patterns, these

methods are capable of identifying certain data generating processes and, as a re-

sult, are often used to inform etiological work (Ward and Carpenter, 2000). Most of

these tests, however, dubiously assume the underlying susceptible population within

a study area to be invariant through time and across space. In settings where this

assumption does not hold, these tests will detect space-time interaction due to pop-

ulation changes in addition to interaction resulting from the data generating process

of interest. The excess interaction observed due to violating this assumption and

by failing to account for the changes in the underlying population is referred to as

population shift bias (Kulldorff and Hjalmars, 1999). Although recognized, this bias

is often not accounted for in practice and its potential impact on results is not fully

explored. This paper carries out a simulation to develop a detailed understanding of

the impact of population shift bias on three of the most common tests of space-time

interaction: the Knox (1964), Mantel (1967), and Jacquez (1996) tests. Addition-

ally, the simulation demonstrates that contrary to prior claims (i.e. Kulldorff and

Hjalmars, 1999; Aldstadt, 2007), population shift bias is problematic even in studies

with a short temporal extent. To these ends, we simulate events within the dynamic

population of a hypothetical metropolitan landscape over the course of one day. We

then quantify the amount of population shift bias affecting each of the space-time

interaction tests for a number of different population movement scenarios.

2 Interaction Tests

The space-time interaction tests considered in this study are described in further

detail below. The methods have been implemented by the authors in Python and are

available in the open-source space-time analysis software, PySAL (Rey and Anselin,
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2010). Note that in all cases we employ Euclidean distance metrics. Also, events

are never considered adjacent to or neighbours of themselves.

To calculate the Knox (1964) test for space-time interaction, critical space and

time distance thresholds (δ and τ , respectively) defining adjacency between events

are specified by the user. The test statistic is then calculated as the count of event

pairs that are adjacent in both time and space. Formally, the test statistic is specified

in Equation 1, where n = number of events, as = adjacency in space, at = adjacency

in time, ds = distance in space, and dt = distance in time.

X =

n�

i

n�

j

asija
t
ij (1)

asij =

�
1, if dsij < δ

0, otherwise

atij =

�
1, if dtij < τ

0, otherwise

The Mantel test is a modification of the Knox test that considers the space

and time distances between all pairs of events, and not just those within critical

thresholds (Mantel, 1967). The test statistic is the sum of the products of the

spatial and temporal distances between all event pairs in the dataset. The statistic

is specified in Equation 2, where, again, ds and dt denote distance in space and time,

respectively.

M =

n�

i

n�

j

dsijd
t
ij (2)

In an effort to address shortcomings of the previous two methods, Jacquez (1996)

developed a test using a similar form, based on nearest neighbour distances. The

test locates the k nearest neighbours in both space and time for all events and

then counts those common to both dimensions for individual events. Formally, the

statistic, Jk is defined in Equation 3, where n = number of cases; as = adjacency

in space; at = adjacency in time.

Jk =

n�

i

n�

j

asijka
t
ijk (3)

asijk =

�
1, if event j is a k nearest neighbour of event i in space

0, otherwise

atijk =

�
1, if event j is a k nearest neighbour of event i in time

0, otherwise

To assess the significance of the results for each of these tests, a Monte Carlo ap-

proach is traditionally used where in each permutation the temporal coordinates are

shuffled and the statistic is recalculated. This generates a distribution of potential
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values for the statistic (specific to the observed event pattern), which is then used

to assess the pseudo-significance of the observed test statistic value. While this ap-

proach is appropriate in situations where the susceptible population is static across

time, it is inappropriate when the distribution changes heterogeneously through time

and space. Using this method in such a context introduces the population shift bias

mentioned above.

3 Methods

This study measures the bias introduced by failing to account for shifts in the sus-

ceptible population for a hypothetical metropolitan area over the course of one day.

To measure the bias, events (i.e. crimes, illnesses) are randomly generated within

the population in each of four daily movement scenarios: high movement (where 98%

of the individuals change spatial unit for some period during the day); moderate

movement (59% change unit); low movement (35% change unit); no movement (all

individuals remain within unit). The metropolitan area has a population of 640,000

divided equally among its 40 spatial units (see Figure 1). In each of the dynamic

scenarios, the population in the spatial units varies heterogeneously over the course

of the day. Some spatial units gain population (employment or shopping locations)

at certain points of the day while others lose population (bedroom communities).

Additionally, we consider the same scenarios with an additional influx of 400,000

individuals to the metro (visitors or commuters) from the periphery during the day.

Gaining Units
Losing Units

0 2 41 KM

Figure 1: Simulation study area.
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To estimate the population shift bias, we follow the methodology of Kulldorff

and Hjalmars (1999). For our experiment, this means events are randomly assigned

to spatial units in the metro at different hours in the day based on a probability

proportional to the population of the spatial unit at each hour of the day. In this

example, all individuals were assumed to be susceptible to the events. For each

movement scenario, 1000 replications are run where 100 events are randomly simu-

lated. The significance of the test statistics in each replication is assessed using the

Monte Carlo approach described above. For each scenario and test combination, the

proportion of significant replications (where α = 0.05 and 0.01) is recorded. Because

there is no population movement in the static scenario, there is no population shift

bias; as a result, the proportion of significant replications for this scenario serves

as our baseline. The difference between the proportion of significant replications

observed for the dynamic population scenarios and that observed for the static pop-

ulation scenario measures the amount of population shift bias present in each of

the tests, for each scenario. The parameters used in this study for the Knox and

Jacquez tests are outlined in Table 1, no additional parameters were specified for

the Mantel test.

4 Results

The results, shown in Table 1, illustrate the sizable impact population shift bias

may have on these tests of space-time interaction, even for the short temporal extent

considered. Generally speaking, the Knox test was most affected by the population

shifts. As the critical distances used by the test increased, observed bias increased

as well, in one case up to 95 times the α value. Although this extreme example

is partly an artifact of our experimental design, which intended to promote any

potential bias by concentrating mobile individuals in the gaining spatial units, the

scenarios designed are not implausible and neither, therefore, are the estimates of

the bias. Researchers employing this test, especially in an urban context, need to be

aware of this susceptibility. Although still affected, the results for the Jacquez test

displayed the least amount of bias, likely due to the relative nature of the nearest

neighbour distance metric employed by the test. For all tests, any bias observed

was increased by the addition of the influx population to the metro area.

The take-home message from this work is that population shift bias must be

accounted for when employing tests of space-time interaction regardless of the test

employed or the duration of the study. This can be accomplished by using an

unbiased form of the test which takes population shift into account. A general

template for such unbiased tests is described in Kulldorff and Hjalmars (1999).

Future research should concentrate on specific implementations of this form.
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Without Influx Population With Influx Population

Low Movement Moderate Movement High Movement Low Movement Moderate Movement High Movement

Test Parameters α = 0.05 α = 0.01 α = 0.05 α = 0.01 α = 0.05 α = 0.01 α = 0.05 α = 0.01 α = 0.05 α = 0.01 α = 0.05 α = 0.01

Jacquez

k = 1 0.009 0.006 0.032 0.016 0.108 0.058 0.030 0.005 0.033 0.020 0.103 0.053

k = 2 0.008 -0.004 0.035 0.011 0.139 0.073 0.020 0.009 0.044 0.028 0.167 0.116

k = 3 0.007 0.001 0.050 0.022 0.257 0.140 0.045 0.017 0.074 0.037 0.241 0.149

k = 4 0.003 -0.005 0.039 0.022 0.302 0.176 0.038 0.012 0.096 0.040 0.299 0.188

k = 5 0.007 -0.003 0.049 0.019 0.390 0.228 0.065 0.019 0.121 0.047 0.376 0.244

Knox

δ = 0.5, τ = 0.25 0.030 0.021 0.024 0.002 0.062 0.045 0.022 0.017 0.028 0.017 0.082 0.100

δ = 1.0, τ = 0.25 0.016 0.009 0.038 0.016 0.125 0.062 0.054 0.030 0.068 0.031 0.158 0.118

δ = 2.0, τ = 0.25 0.022 0.023 0.035 0.033 0.170 0.084 0.062 0.031 0.092 0.049 0.216 0.153

δ = 5.0, τ = 0.25 0.024 0.009 0.071 0.028 0.327 0.171 0.094 0.031 0.127 0.054 0.383 0.223

δ = 0.5, τ = 0.50 0.011 0.012 0.042 0.023 0.160 0.079 0.045 0.032 0.068 0.042 0.200 0.147

δ = 1.0, τ = 0.50 0.017 0.011 0.056 0.026 0.266 0.146 0.064 0.034 0.141 0.086 0.319 0.220

δ = 2.0, τ = 0.50 0.031 0.016 0.088 0.048 0.411 0.261 0.107 0.052 0.237 0.116 0.473 0.348

δ = 5.0, τ = 0.50 0.038 0.016 0.154 0.067 0.661 0.499 0.181 0.075 0.349 0.179 0.766 0.599

δ = 0.5, τ = 1.00 0.025 0.004 0.079 0.040 0.332 0.207 0.097 0.043 0.180 0.086 0.416 0.303

δ = 1.0, τ = 1.00 0.043 0.016 0.116 0.050 0.528 0.376 0.144 0.067 0.276 0.149 0.587 0.461

δ = 2.0, τ = 1.00 0.052 0.019 0.134 0.076 0.709 0.575 0.224 0.104 0.410 0.230 0.777 0.686

δ = 5.0, τ = 1.00 0.079 0.039 0.249 0.127 0.896 0.847 0.337 0.176 0.603 0.421 0.926 0.905

δ = 0.5, τ = 2.00 0.017 0.009 0.036 0.022 0.433 0.250 0.115 0.050 0.185 0.089 0.501 0.364

δ = 1.0, τ = 2.00 0.028 0.011 0.094 0.042 0.649 0.502 0.173 0.072 0.309 0.170 0.737 0.604

δ = 2.0, τ = 2.00 0.044 0.016 0.150 0.081 0.790 0.704 0.261 0.123 0.451 0.277 0.852 0.821

δ = 5.0, τ = 2.00 0.071 0.042 0.249 0.150 0.908 0.898 0.362 0.203 0.638 0.487 0.929 0.950

Mantel 0.075 0.026 0.139 0.056 0.592 0.407 0.181 0.086 0.216 0.093 0.569 0.384

Table 1: Population shift bias for all combinations of tests and population movement scenarios.
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1. Introduction 
Air pollution measurements display patterns over space and time allowing for spatio-temporal 
modelling, through which pollution concentrations and trends can be analysed. In Malta, the MEPA 
(Malta Environment and Planning Authority) collects monthly averaged data for various pollutants 
from a network of 123 diffusion tubes located around the Islands (Figure 1). This preliminary study 
uses data associated with traffic, that is nitrogen dioxide (NO2) and benzene, collected monthly 
between the period 2004 and 2010 with the objectives to i) develop a computationally efficient method 
that best describes the data; ii) determine the level of dependency of each site on neighbouring ones 
and iii) identify any factors that affect the behaviour and patterns of pollution. Results will show that 
generally there is a low spatial dependency between close sites, thus implying that local sources, rather 
than diffusion, have a predominant effect on the measurements.  This analysis will prove valuable in 
MEPA’s redistribution exercise of the diffusion tube network to determine which sites are necessary to 
retain and which sites can be removed without significantly affecting the information gathered. 
 
2. The case study - Malta 
Malta is located in the centre of the Mediterranean Sea at approximately 100 kilometres south of 
Sicily. The archipelago consists of three main islands with a population of over 400,000, with the 
major environmental concern being the air quality (Government of Malta 2002, Office of the Prime 
Minister 2010). The main contributors to air pollution are the high demands for energy generation and 
the growth in private car use.  Electricity is generated from the combustion of fuel oil at two power 
stations. In addition, the islands were home to 229,016 private vehicles in 2009 (NSO 2009), one of 
the highest car ownership rates in the world. These have increased the risks of atmospheric pollution 
particularly by carbon monoxide, oxides of nitrogen, volatile organic compounds and particulate 
matter (MEPA 2010). 
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Figure 1. Location of Passive Diffusion Tubes (drawn by author) 
 

 
3. Data Analysis and Validation 
Data-driven modelling strategies  (Ljung 1999) are applied in this research to study the dependencies 
between readings taken at different sites. In particular, statistical multivariate or Vector 
AutoRegressive (VAR) models are used to represent the spatio-temporal relationships in the data. 
These methods were first proposed for the study of such phenomena in Pfeifer and Deutsch (1980a, b).  

Seasonal and temporal trends in the data were eliminated so as to identify dependencies among 
sites rather than correlations due to these trends. Detrending was performed by differencing (Chatfield 
2004) and the stationary time series obtained were modelled by the VAR(p,q) models, given by 
equation 1: 

zzzzt = AAAA1zzzzt-1 + AAAA2zzzzt-2 + AAAA3zzzzt-3 + AAAA4zzzzt-4 +.... + AAAApzzzzt-p                                              (1) 

where p denotes the temporal order, q denotes the spatial order of the system, Ai�ℝ123 × 123 are the 

MALTA 

GOZO 

COMINO 
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autoregressive terms and zzzzt�ℝ123 × 1 denotes the air pollution observations of all 123 sites at time t.  

Due to the large number of parameters to estimate from the limited data, the computationally 
advantageous method in de Luna and Genton (2005) was adopted, summarized in Algorithm 1.  Some 
assumptions have been made, namely that the climate remains homogenous throughout all sites under 
study, that the spatially closer sites have a larger probability of being correlated thus providing a 
natural ordering for the sites and that only temporal dependences over a monthly period can be 
captured due to the data’s temporal resolution and thus shorter term dependences cannot be ruled out. 
 

Iterate for site, si=1,2,...,123 
Order all sites in ascending order of distance relative to si 
For  p =1,2,...,n  

For q=1,2,...,k (where n and k represent the maximum temporal and spatial order 
respectively) 
Estimate A1,A2,...,Ap 

Identify the best model orders for si based on some comparitive measures 

Algorithm 1: Iterative model building strategy (de Luna and Genton 2005) 
 
The applied comparitive measures are based on model selection criteria, which include the 

Bayesian Information Criterion (BIC), the Akaike Information Criterion (AIC) and the Mean Squared 
Error (MSE).  The principle of parsimony (Chatfield 2004) is applied thus aiming to identifying the 
simplest model that produces good prediction results. Figures 2 and 3 show MSE, AIC and BIC values 
for different temporal model orders for benzene and NO2 respectively. Since AIC and BIC values tend 
to penalize models with larger spatial and temporal orders, these results are weighted more heavily 
when deciding on the model order. 

Note that in Algorithm 1, the computational demand is significantly reduced when comapred to 
estimating full VAR models since only the statistically significant coefficients are estimated. Note also 
that, to the authors’ knowledge these methods have only been applied to datasets with a small number 
of observation sites (usually less than 10), while in this work the flexibility of this method to solve 
higher dimension problems (123 sites) has been tested. The predictive accuracy of the models obtained 
has been tested by a validation data set not used in the estimation procedure. Using this dataset, the 
one step ahead residues after modelling were found to be temporally white (thus void of any further 
linear temporal relationship) up to a confidence interval of 88% for benzene and 91% for NO2. Based 
on these models the spatial order for both benzene and NO2 was mostly limited to the three closest 
neighbours. 
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Figure 2. The mean MSE, AIC and BIC for benzene over all sites. 

 
 

  

 

 
 
 
 
 
 
 
 
 

Figure 3. The mean MSE, AIC and BIC for NO2 over all sites.   
 
 
 

4. Conclusions 
Figures 4a and 4b give histograms for the number of dependent sites while Figures 5a and 5b show the 
number of dependent sites for each location for benzene and NO2 respectively.  
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Figure 4a. Histogram showing dependency of     Figure 4b. Histogram showing dependency of 
Benzene data points on closest sites        NO2 data points on closest sites 

 
In Figures 4 and 5, a value of 0 indicates that the reading at that particular site is only dependent on 

previous readings at the same site, while a value of 1 indicates that the measurements are dependent on 
the site itself and its first closest neighbour, and so on for the other values. 

The assumption that dispersal of pollutants is equidistant and therefore one source of pollution in 
one area has an effect on the neighbouring areas is not supported here. This is further demonstrated by 
the overlaying of potential sources of pollution in the main island such as traffic density, industrial 
estates, power stations and the airport. Notwithstanding that most of the points are located relatively 
close to each other and to these sources, most readings seem to be independent.  

The overall spatially independent behaviour of these pollutants would suggest that there are other, 
more local factors that are affecting air pollution. Some possible interpretations follow. 

� Since there is input from a stable source (e.g. traffic) similar temporal patterns can be 
observed. However, at another location, the source input levels may change (for example, 
less traffic) and therefore the behaviour of that point, even though it is relatively close, is 
independent. This is most evident in the area northwest of the Grand Harbour (marked A in 
Figures 5a and 5b). This is reasonable since in the Maltese urban environment the urban 
density, urban fabric and traffic change considerably over a relatively short distance. 

� A few points experience higher spatial dependencies. These are marked with the letters B 
and C in Figure 5a. In these cases we note that (i) the pollution values at some of these 
locations are relatively low, thus affecting the accuracy of the modelling procedure (area 
marked B) (ii) there are very similar environmental conditions (traffic and urban density) 
affecting the sites (area marked C). 

� These results are validated by MEPA’s approach adopted for the location of diffusion tubes. 
MEPA selects two to three sites per locality, one of which is a traffic site and the 
other/others are background sites (without traffic).   
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Figure 5a. The number of dependent sites for     Figure 5b. The number of dependent sites for  
each location for Benzene.         each location for NO2 

 
 

Future work will focus on introducing measured pollution sources to the mathematical model to 
verify the dependency of the pollution readings on these sources. 
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1. Introduction  
Landscape descriptions in natural language are a primary source of what Egenhofer and 
Mark (1995) call naïve geographical knowledge. Naïve geographical knowledge, 
however, differs for different people from different cultures and backgrounds (Mark and 
Turk 2003). For example a description of Uluru in Australia might be very different if 
given by Dutch tourist in comparison to one given an indigenous inhabitant. 

Geoparsing, in particular considering toponym ambiguity is a key task in linking 
language to space through the assignment of geographic scopes to documents (Clough 
2005). Leidner (2007) states that almost all research in geoparsing has focused on 
populated places. ‘Population’ furnishes toponyms with a priori knowledge that is used 
by state of the art disambiguation approaches (e.g. Purves et al. 2007) using the most 
populated place as the default toponym in disambiguation. 

Landscape descriptions, however, typically contain references to unpopulated places, 
implying other approaches must be adopted to disambiguate.  

Here we generate missing knowledge about toponyms using geomorphometric 
characteristics, in our case for a landscape feature known as a Hochmoor1

2. Data Center Nature and Landscape 

. The toponym 
knowledge thus created is used for referent disambiguation (i.e. is London, England or 
London, Ontario relevant) - to our knowledge the first example of geomorphometric 
disambiguation. Our method shows considerable improvement in performance over a 
baseline disambiguation method. Disambiguation is the first important step towards 
opening up extensive sources of naïve geographical knowledge in the form of landscape 
descriptions in natural language which are likely to contain many ambiguous toponyms, 
which in turn will make such documents more accessible for a wide range of 
geographically rooted research. 

In our investigation we use documents describing Hochmoor in natural language. The 
documents are part of the Data Center Nature and Landscape (DNL). The DNL was 
established according to the specifications of the Swiss Nature and Cultural Heritage 
Protection to manage all Swiss data regarding protected areas of national importance. 
Information on the condition, composition and location of more than 500 Hochmoor in 

                                                 
1 We use the German term Hochmoor which is a geographic object closely related to a high moor or a bog, 
to avoid semantic confusion through translation. 
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Switzerland has been collected in a corpus and recorded in separate datasheets (Bauer-
Messmer et al. 2009). The datasheets are written in three national languages, French, 
Italian or German and we investigate German datasheets here (n=370). A simple 
gazetteer lookup performed on the documents using SwissNames2

3. Geomorphometric knowledge for toponym disambiguation 

 recognizes 600, 
mostly ambiguous, toponyms that can be referenced to more than 2500 locations in 
Switzerland. 

We assume that locations of toponyms used to georeference Hochmoor have a 
Hochmoor-like topography. Therefore a geomorphometric measurement for Hochmoor is 
deduced from topography. This measurement is further used as the missing knowledge in 
disambiguation (Figure 1). 

 

 
 

Figure 1. Workflow to process disambiguation with geomorphometric knowledge. 
 
In a first step real Hochmoor locations (n=100) are used to infer geomorphometric 
knowledge. Thus, relative histograms for the 16 geomorphological classes introduced by 
Iwahashi and Pike (2007) are calculated for two windows of 0.25km and 5km centered 
on Hochmoor locations. The same is done for 1000 random locations within Switzerland 
(Figure 2). 

What we term geomorphometric knowledge has become a vector with 32 dimensions, 
one vector for each Hochmoor and random location (16 classes for the 0.25km and 5km 
window respectively). The geomorphometric knowledge can be summarised as follows: 
In close proximity to Hochmoor centers (0.25km) topography is characterised by fine 
textures and gentle slopes (classes 9, 11, 13, 15). Steep slopes and coarse textures become 
more frequent if we widen the scale to the neighborhood of a Hochmoor (5km; classes 6, 
8). This conforms to our notion of Hochmoor being plains in a mountainous environment, 
a secondary effect of the process of Hochmoor evolution. 

The generated geomophometric knowledge, in terms of location-vectors with 32 
dimensions, is used to train a probabilistic SVM classifier (Burges 1998) to distinguish 
Hochmoor from random locations (probability is equal to the distance between vector and 

                                                 
2 http://www.swisstopo.admin.ch/internet/swisstopo/de/home/products/landscape/toponymy.html 
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hyperplane). The classifier can be used to quantify geomorphometric Hochmoor 
probability for each designated set of coordinates. In our case we are interested in 
geomorphometric Hochmoor probabilities for all 2500 referent locations from the 
datasheets. At this stage geomorphometric Hochmoor probability has become what we 
term toponym knowledge. 

In a last step we disambiguate toponyms using the generated toponym knowledge. In 
a most basic disambiguation scenario each of the 600 toponyms are disambiguated with 
the referent location of maximum geomorphometric Hochmoor probability. 

 

 
 

Figure 2. The 16 Iwahashi & Pike classes (upper right) and two typical relative 
histograms for a Hochmoor and a random location. 

 

4. Geomorphometric disambiguation results 
Here we focus on referent disambiguation of datasheets containing a single ambiguous 
toponym. All toponyms were manually semantic disambiguated in a previous step (e.g. 
removing instances of Bath where it is a place to wash and not a town). 

There are 50 such single toponyms with 330 referent locations covering 20% of all 
datasheets. Single toponyms are the most complex case of toponym ambiguity, since 
knowledge gained from other, unambiguous toponyms, in a datasheet cannot be used to 
aid the process. 

As is shown in the previous section only the referent location with the highest 
geomorphometric Hochmoor probability is resolved. In Figure 3 the Hochmoor 
probabilities for all 330 referent locations are plotted against the distance to the 
corresponding Hochmoor. 
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Figure 3. Boxplot of geomorphometric Hochmoor probability and distance to Hochmoor 
for 330 referent locations. 

 
Figure 3 shows that geomorphometric Hochmoor probability is high for close referent 
locations and vice versa. In a nutshell, geomorphometric disambiguation allows us to 
resolve some 58% of the 330 referent locations. The baseline for disambiguation, i.e. the 
mean probability of successfully disambiguating toponyms by making a random decision, 
given no other information, is only 23%. 

 
 

Figure 4. Disambiguation accuracy compared with count of reference locations of 
toponyms. 
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In Figure 4 the relationship between disambiguation accuracy and count of potential 
referents per toponym is visualized. The accuracy drops as the count of referent locations 
of toponyms increases. 

5. Conclusions 
Using the knowledge generated from geomorphometric characteristics of Hochmoor 
makes disambiguation more than twice as precise as the baseline (58% vs. 23%). 
Topography supplies substitute knowledge for cases where no a priori knowledge is 
available. 

We used a rather basic approach to gather Hochmoor probability from topography. 
However, the same approach could be applied to all kinds of geographic objects (e.g 
hills, mountains or lakes).  

Disambiguation with many referent locations is still inaccurate (Figure 4). Sometimes 
topographic Hochmoor probability is considerably higher for locations being far from the 
actual Hochmoor (Figure 3, outliers >25km). This may be due to false positive 
classifications, however, our inventory describes Hochmoor as classified at the present 
time, whilst geomorphometric characteristics describe locations with the affordance of 
being a Hochmoor, which may have been drained or otherwise altered in the last 200 
years, which applies for some 85% of all original Hochmoor (Klaus 2007). 

Many referent locations that are close to Hochmoor have rather small 
geomorphometric Hochmoor probabilities (Figure 3, minimas >1km). The assumption of 
spatial referents to Hochmoor always having a Hochmoor like topography is therefore 
clearly not always true. 

In further work we will concentrate on resolving semantic ambiguity in landscape 
descriptions. We will face a very similar problem. Again there is no a priori knowledge 
that could serve for disambiguation. The general aim is to explicitly link landscape 
descriptions with space. This is the first important step to make naïve geographical 
knowledge in landscape descriptions useable.  
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1. Introduction  
The term ecotone was first used in 1905 by F. E. Clements (1905) to describe visually 
different area between two ecological systems .  Lately there has been a lot of attention to 
model and describe those transitional zones between ecological classes (Kilianová et al., 
2009, Arnot and Fisher, 2007, Hufkens, 2008). Most of this research aims either to 
identify the best border between ecological systems or to identify ecotones as fuzzy 
objects mainly on data from remote sensing or some other very specific type of data 
(Fisher, 2006, Hufkens, 2008).  

The aim is to identify areas where ecotones are most likely present using land cover 
and/or land use data, because those type of data are very common and can be easily 
obtained almost for any area of interest.  

Theidea of estimating ecotone occurrence from such data is based on several 
assumptions including facts that specific landscape indexes correlates with ecotone 
occurrence and that geometric characteristics of adjacent ecological areas can affect 
quality of the ecotone between those classes. However a great amount of uncertainty is 
present in this knowledge because so far no study proved exact link between those factors 
and ecotone presence. For those purposes fuzzy type 2 sets were used to incorporate the 
correct amount of uncertainty in the output. 

2. Theory and Model 
According to Holland et al. (1991) ecotones are defined as “zones of transition between 
adjacent ecological systems, having a set of characteristics uniquely defined by space and 
time scales and by the strength of interactions between adjacent ecological systems“. 
Such definition is applicable to ecological systems in any scale and the output ecotones 
thus may vary in their size from few centimeters to several kilometers (Holland et al., 
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1991, Kiliánová et al., 2009). Another definition describes ecotone as area with high rate 
of change when compare to surrounding areas (Kiliánová et al., 2009). Same sources also 
claim that ecotone might contain more species and provide very specific conditions that 
couldn’t be found in any of neighbouring area.Ecotones based on its characteristics can 
be linked with many ecological factors such as barrier, corridor or edge effect which 
makes the important part of landscape matrix. Because of the given characteristics is 
identification and monitoring of those spatial structures crucial to understanding 
biodiversity (Holland et al., 1991) 

Several approaches on mapping ecotones exist. It is possible to represent them as crisp 
areas or as lines that have no area (Arnot and Fisher, 2007), but none of those is precise 
enough because the first treats ecotone as homogenous area which according to its 
definition isn’t correct and the second omits the fact that ecotone may occupy quite 
significant area and thus representing it as line is too much generalization. The most 
correct representation of ecotone based of several sources (Arnot and Fisher, 2007, 
Kiliánová et al., 2009) that follows its definition is such where ecological systems are 
represented as spatial fuzzy sets and ecotone is an area that has specific degree of 
membership to more than one fuzzy set (Fig. 1). Different variations of this approach are 
presented in several sources(Arnot and Fisher, 2007, Hufkens, 2008). Given those 
reasons the fuzzy representation of ecotone seems the best for modeling both spatial 
extent as well as quality. 

 

Figure 1.  Representation of ecotone as intersection of two fuzzy sets 
 

The main step in estimating the occurrence of ecotone with use of fuzzy sets is to 
fuzzify the input land cover data. As suggested above the landscape indexes, geometric 
properties and indexes of area and the relation between neighboring areas affect spatial 
extent and quality of ecotone. Fig. 1 shows how result of such fuzzifying may look like. 
Areas with membership value 1 are so called core areas of the ecological unit. Original 
boundary shows where originally was the border when area was classified into crisp sets 
of land cover categories. Wide of support of fuzzy set is defined by function that derivate 
its result from values of several landscape indexes, geometric properties of area and 
relation to neighbor. In practical example the wide of support of fuzzy set for forest with 
very complex shape in highly heterogeneous landscape that neighbors meadow will be 
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much higher than for field with almost geometric shape in homogeneous landscape that 
neighbors road. This is based on premises that ecotones tend to be of higher quality and 
have bigger spatial extent in more heterogeneous landscape, on border of areas that have 
more complex shapes and between ecologically more stable and quality areas. All of 
mentioned parameters have impact on creating each area’s fuzzy sets that determines 
areas zone of influence. Result ecotone is then created as intersection of two or more 
fuzzy sets. The quality of ecotone is determined based on ecotone’s geometric properties 
and spatial statistics of overlapping fuzzy sets. The area occupied by the ecotone and the 
grade of union of membership values are the factors that are used in this part of model. 
This assessment of quality helps in estimating the uncertainty with witch was the given 
ecotone’s spatial extent calculated. Low quality ecotones tend to be of lower spatial 
extent, resulting in extreme cases to state called ecoline, almost crisp border between two 
ecological systems. 

 

 
Figure 2.  Representation of spatial extent of ecotone as type 2 fuzzy set 

 
Quality of ecotone is in the model perceived as type 2 fuzzy set that modifies 

membership value into interval of values (fig. 2). The extent of this type 2 fuzzy set 
indicates how precise the estimation of spatial extent of ecotone is. This brings to the 
model fact, that for ecotones with low quality it could be much more complicated to 
estimate its occurrence and such ecotones are also much vaguer than the ones with higher 
quality. 

Proposed model estimates occurrence of ecotones from common land cover and/or 
land use datasets and is suitable for modeling of ecotones in big scales. In the case study 
the aim was to catch even small ecotones that occur between roads and meadows as well 
as rivers and forests. 

3. Case study 
Area of interest is protected landscape area Litovelské Pomoraví located at north part of 
central Moravia between cities Mohelnice and Olomouc (fig. 3) with city Litovel being 
located almost exactly in the middle of protected area. The main reasons for protection 
are natural meanders of river Morava and floodplain forests that surround the river. The 
area is characterized by having many small ecological systems resulting in quite 

GeoComputation 2011

114

Session 3B: Uncertainty & Accuracy



oftentransitions between those various ecological units.Such locality provides optimal 
space for testing proposed model because it provides great diversity in land cover/land 
use types. 
 

 
 

Figure 3.  Localization of protected landscape area Litovelské pomoraví 
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Abstract  

With an ongoing variety of pervasive computing devices integrated in our environment and an 
increasing mobility of users, it is necessary for mobile systems and services to be context-aware. 
Introducing relevant contexts to the user is the main properties of context-aware systems 
especially spatial relevant contexts. Most often as situations change gradually, there is no sharp 
boundary about how far one can see some relevant objects. It seems that contexts do not have 
crisp borders where they are true on one side but false on the other side. On the other hand, every 
context and mobile user has an influence interval in an urban network. So applying fuzzy spatial 
inervals for contexts and mobile users and defining their spatial relationships could effectively 
model spatial relevancy parameter. The main contribution of this paper is introducing fuzzy 
interval algebra for modeling spatial relevancy in context-aware systems. The proposed algorithm 
is implemented in a context-aware tourist guide system. The experimental results showed that the 
algorithm could accurately detect the spatial contexts.  

Keywords: Fuzzy Spatial Interval; Context-aware; Interval Algebra; Tourist. 

1 Introduction 

Context-aware systems are computer systems that use context to provide more relevant services 
or information to support users performing their tasks, where context is any information that can 
be used to characterize the situation in which something exists or occurs (Vieira et al., 2010). 
The major challenge of the context-aware systems is to find an acceptable degree of information 
reduction to the relevant ones (Reichenbacher, 2005). Relevancy is a parameter which depends on 
the contexts supported by the system. Brown (1996) described that “context awareness”, is a 
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term that describes the ability of the computer to sense and act upon information about its 
environment, such as location, time or user identity”. Because of the importance of location in 
fieldwork applications, the hand-held computers used are normally connected to a GPS receiver.  

Reichenbacher (2005) modeled relevancy parameters and proposed some general rules of thumb 
for the assessment of relevancy that build a kind of hierarchy of relevant geospatial objects. He 
claimed that the bases of finding relevant contexts are physical and spatial relationship. Kwon 
and shin (2007) implemented a context-aware system “Location-aware COoperative Query 
system (Laco)”. They modeled the spatial relations with metric distance and applied shortest 
path.  

Review of the related researches proved that spatial relationship between the user and the 
contexts is a dominant factor for finding relevant objects in context-aware systems. However, it 
seems that more research to explore qualitative and quantitative spatial relevancy modeling is 
still needed.  

The objective of this paper is to provide relevant information to the right situation for mobile 
users. We aim to model spatial relevancy parameters via spatial relationships between the user 
and his/her contexts. The main contribution of this paper is using fuzzy spatial interval algebra to 
model spatial relevancy in context-ware systems. It is assumed that the locations of users and the 
related contexts have a fuzzy spatial interval. A fuzzy spatial interval is a spatial interval which 
is not crisp and follows a fuzzy membership function. The spatial relationships between them 
model the spatial relevancy in the algorithm. The model is implemented in a tourist guide system 
scenario. The study area is a part of Tehran, capital of Iran.  

2 Background 

This section, briefly explains the concept of context-awareness and spatial relevancy. Then it is 
concentrated on the fuzzy interval algebra and its components.  

2.1 Context-awareness and Spatial Relevancy 

According to Dey's definition, context is any information that can be used to characterize the 
situation of an entity. An entity is a person, place, or object that is considered relevant to the 
interaction between a user and an application, including the user and applications themselves. 
Also a system is context-aware if it uses context to provide relevant information and/or services 
to the user, where relevancy depends on the user’s task (Dey, 2001 and Saracevic, 1996). 
Context appears as a fundamental key to enable systems to filter relevant information from what 
is available, to choose relevant actions from a list of possibilities (Hong et al., 2009; Chedrawy 
and Abidi, 2006), or to determine the optimal method of information delivery (Decouchant et al., 
2009; Pan et al., 2007).  
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 Saraceviec offers a general definition of relevance derived from its general qualities: “Relevance 
involves an interactive, dynamic establishment of a relation by inference, with intentions towards 
a context. Relevance may be defined as a criterion reflecting the effectiveness of exchange of 
information between people (or between people and objects potentially conveying information) 
in communication relation, all within a context” (Saraceviec, 1996, p.205). 

Collecting data and acquiring context out of this data is inherently bound to a location. The 
information is fully relevant at this position. Generally, the relevance of the data declines with 
the distance from its point of origin (Schmidt, 2002). As seen from these observations locality of 
context is quite important and should therefore be included in the model as one of the basic 
relevant parameters which is called "spatial relevancy". Modeling this type of relevancy is 
necessary for context-aware services to provide appropriate information (Reichenbacher, 2005).  

2.2 Fuzzy Spatial Relations in Context-aware Systems 

It seems that contexts do not have crisp borders where they are true on one side but false on the 
other side. This fading, or fuzziness, is related to the relevance of the context. In fuzzy sets the 
main idea is that the membership of a component to a set is not just binary. It is rather fuzzy – 
meaning that an element has a degree of membership to a set (Schmidt, 2002). 

The vagueness of the boarder of context is stemmed from the movement of the user, so by 
modeling the position of user with fuzzy spatial interval we could model spatial relevancy in an 
effective way. A fuzzy spatial interval is a spatial interval which is not crisp and follows a fuzzy 
membership function. The fuzziness of the spatial interval of the user has some characteristics 
including the following ones: 

1) The most spatial relevancy is at the center of spatial interval which is the position of user 
called origin. The membership degree of origin is “1”. 

2) With increasing of distance from the origin, vagueness is increased and membership 
degree is decreased tending to “0”. 

Regarding these matters trapezoidal membership function is selected in this paper.   

3) However, regarding the movement of the user with the car, we could specify the certain 
interval (the part of interval with membership degree equal to “1”) rather than origin. 
This interval is determined by the velocity of movement. As the velocity increases, the 
distance of the interval increases.  

Figure 1 illustrates the vagueness of the spatial interval of the user in a three-dimensional 
model in all directions. Trapezoidal function is used whose argument is the distance between 
the point of origin of the context value and any other point.  
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by (2), Covers (2), disjoin (2) and equal (1). Renz (2001) explained 26 spatial relationships 
between the directed intervals, however as we consider the intervals of the contexts non-directed, 
we are left with 13 relations (Table 1). 

Table 1. The 13 basic relations for spatial relevancy model 
Fuzzy Spatial Interval’s Base Relations  Symbol 

x behind = y b= 

x behind #y b# 

x meet from behind =y mb= 

x meet from behind# y mb# 

x overlaps from behind =y ob= 

x overlaps from behind #y ob # 

x contained-in = y c= 

x contained-in # y c# 

x contained-in the back of = y cb= 

x contained- in the back of # y cb# 

x contained-in-the-front-of # y cf= 

x contained-in-the-front-of # y cf# 

x  equals = y eq= 

 

4 Case Study 

 We implemented the algorithm in Vb.net and developed a prototype in a tourist guiding system 
which consists of a mobile phone and GPS.  The study area is in a part of Tehran. 

The model is evaluated in a directed urban network for a user with different origins and 
destinations in the study area. Then the achieved results and predicted outputs are compared. 20 
different routes for the tourists are considered. In each route a number of contexts have been 
considered as control points and the system is run while the user moves. Then the numbers of 
detected contexts compared with the control contexts are counted. Figure 3 depicts the detected 
contexts and control contexts. This comparison proved that the proposed approach could 
effectively model spatial relevancy parameters in the location-aware system. 
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1. Introduction  

Spatial Bayesian models are increasingly developed to model spatially explicit processes 

in ecology and epidemiology. Spatial models of ecological spread processes, such as an 

infectious disease propagating through a human population or an invasive species 

spreading through a landscape, often have spatially distributed model parameters that 

account for variation spread rate (i.e., deviations from a global model such as a travelling 

wave)(e.g., Smith et al. 2002, Wheeler & Waller 2008). Local parameters are spatially 

varying coefficients with an estimated value at each spatial unit. In Bayesian models, 

each spatial parameter has a full posterior distribution available for inference. One 

advantage of aforementioned models is that each spatial unit has parameter estimates that 

can be used to provide spatial context about the spread process.  

Validation of spatial models presents unique challenges. Typical validation 

approaches include some form of spatially global comparison between observed and 

expected values, such as the chi-squared (χ
2
) test (e.g., Dice 1945). One initial problem 

with a global approach is that obtaining the true value for a theoretical spatial parameter 

describing some property of a complex ecological process is often difficult. Typically, 

assumptions are made based on results of field experiments taken over limited spatial 

scales (e.g., dispersal range in mark-recapture studies). Second, there may be spatial 

structure in the way that parameters themselves fit the data, and understanding the spatial 

structure of parameter estimates may reveal systematic errors that can be used to further 

refine the model. These two issues form the basis for the current research.  

We employ a spatially explicit approach to the evaluation of spatial parameters in a 

Bayesian model-checking framework. Two approaches, posterior predictive checks 
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(Gelman 2005) and map comparison (Wang et al. 2004) are combined to provide 

evidence of model fit that includes information on spatial structure. We examine spatial 

structure when comparing maps of parameter estimates from a spatially local model 

describing the rate of spread across a study area. Our appraoch addresses the second 

problem of evaluating spatially local models. The first problem, knowing the true values 

of the parameters, is handled via Bayesian model checking. Simulation-estimation is a 

common approach whereby the fitted model is used to estimate new data which are then 

used to test model fit via a measure of discrepancy (Gelman et al. 1996). A case study 

using simulated data describing different spatial-temporal spread patterns is used to 

highlight our methodology.  

2. Methods  

2.2 Simulation-Estimation 

In Bayesian modelling , uncertainties in parameter estimates are evident in the properties 

of the posterior distribution. If values are tightly clustered around the mean, there is 

strong evidence that the mean is a good estimate. Checking the model as a whole is more 

complicated. Posterior predictive checking is an approach whereby random draws from 

the posterior distributions of all model parameters are used to simulate new data sets, 

generally denoted as Yrep, which we define as simulated replicates of the observed data. 

The Yrep can be used to measure model fit with a general discrepancy measure such as the 

Deviance Information Criterion (Spiegelhalter et al. 2002), or more specific model test 

statistics. We re-estimate the model using the Yrep datasets and compare the parameter 

estimates with known true values (i.e., those used to simulate the data). The comparison 

of these values at each spatial location forms the central problem of this research. 

2.3 Map Comparison 

The objective of map comparison here is to uncover similarities (or differences) in the 

spatial structure of expected and observed parameter maps. Examining spatial structure 

provides improved confidence in observed parameter estimates over purely aspatial 

comparisons. We selected the structural similarity (SSIM) index as an exploratory 

statistic for comparing maps (Wang et al. 2004). SSIM incorporates a Gaussian weighting 

function, to assess similarity across spatially local regions. SSIM does not require direct 

pixel to pixel comparisons, which ignore spatial structure and often produces overly 

critical comparison statistics (Pontius 2000). SSIM considers three components for map 

comparison: luminance, contrast, and structure, relating to local differences in mean, 

variance, and covariance respectively (Wang et al. 2004). Note that these three 

components are relatively independent, and changes in one component will not 

necessarily affect others (Wang et al. 2004). SSIM takes the following spatially local 

form, computing a similarity statistic for each spatial unit: 


)],([)],([)],([),( yxsyxcyxlyxSSIM                               (1) 

where (x,y) denotes the spatial unit, l the luminance component, c the contrast 

component, and s the structure component (Wang et al. 2004). The exponents α, β, and γ 

can be used to weight individual components, with default values taken as α = β = γ = 1. 

We report a mean global statistic for each of the three components and overall similarity. 

When two maps are identical, SSIM = 1, and values decrease as similarity decreases. 
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Expected and observed maps with low similarity in the luminance component are 

interpreted differently from those low in the structure component.  

2.4 Case Study  

To demonstrate the importance of spatial structure in model validation we implement 

the SSIM statistic comparison of data simulated from a model with spatially local 

parameters describing a spreading process. We specify a logistic model for a spatial 

spread process similar to Smith et al. (2002) where the logistic probability of an 

uninfected region (i) becoming infected at time t is defined as: 

log{pit /(1- pit)} = μt + λi NN[i,t-1]                               (2) 

Here μt is a time varying parameter representing a baseline probability of infection; NN[i,t-

1] is the number of infected neighbors of region i at time t-1; and λi is a spatially varying 

parameter quantifying the impact of infected regions on their uninfected neighbors. Our 

research here focuses on investigating the spatial structure of differences between the true 

values for λ and those estimated by the model. Values for spread were simulated as in 

Figure 1.These values were used to simulate data describing a spreading process on 

40x40 grids over 100 time periods. As such, these represent the true values against which 

model estimates from the Yrep data are compared via map comparison 

 
a)      b)       c) 

Figure 1. True values of diffusion parameters (λ) in three scenarios of a spatial spread 

process: a) Λ1, b) Λ2, c) Λ3. A range of μ-scenarios (M1, M2, M3) were also used (not 

shown), generating nine spread scenario combinations. 

3. Preliminary Results  

Results of map comparison analysis on three types of diffusion spread represented in 

Figure 1.  

 

  M Luminance Contrast Structure SSIM 

Λ1 

1 0.924 0.864 0.889 0.710 

2 0.231 0.739 0.890 0.152 

3 0.951 0.881 0.899 0.753 

Λ2 

1 0.681 0.870 0.898 0.532 

2 0.214 0.872 0.930 0.174 

3 0.824 0.858 0.897 0.634 

Λ3 

1 0.974 0.827 0.697 0.561 

2 0.903 0.726 0.692 0.454 

3 0.972 0.856 0.720 0.599 
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Table 1. Map comparison analysis results comparing estimated diffusion to the true 

diffusion used to simulate data. 

 

3. Discussion 

Map comparison revealed that in some cases observed spread values were different from 

expected in terms of magnitude but the general spatial pattern of spread (structure 

component) was retrieved. The SSIM method enables creation of maps of local 

differences in mean, variance, and covariance, providing information on the spatial 

structure and differences in each which can be further explored to reveal systematic 

deficiencies in model development. Models that fit well based on aspatial validation tests 

do not always demonstrate good spatial agreement, warranting such a spatial approach. 

The approach we present for model evaluation is relatively simple and can be easily 

implemented with existing models (not exclusively Bayesian) providing valuable and 

unique insight on how the spatial structure of parameters relate to model performance. 
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1. Introduction 
Developing effective means of theorizing and dealing with uncertainty continues to 
attract a great deal of interest in GIScience (Brown 1998, Rashed and Weeks 2003, 
MacEachren et al. 2005, Klugl et al. 2006, Lilburne and Tarantola 2009). During the 
last few decades, grey information theory has emerged in the engineering sciences as a 
means of better understanding uncertain information and processes in human and 
physical systems (Liu and Yi 2006). This paper explores the potential implications of 
grey information theory for conceptualizing uncertainty in GIScience, emphasizing its 
possible role in spatial modelling and geocomputation.  
 

2. Background 
Many spatial problems consist of both known and unknown elements. For example, in 
spatial models of facility location, candidate sites for prospective new retail stores are 
often known, but the demand for sited facilities’ goods or services may not be certain 
(Hale and Moberg 2003, Snyder 2006). Similarly, when modeling urban land use 
change, base year land use (known) is subjected to a host of hypothesized processes 
(some unknown) to estimate future land characteristics (Li and Yeh 2000, Al-Ahmadi 
et al. 2009).  In other situations, such as emergencies or extreme weather events 
(Elsner et al. 2006), there simply may not be sufficient historical spatial information to 
model a particular human behavioral response using traditional statistical approaches 
(Liu and Yi 2006). 

One approach to deal with such situations is to treat uncertain problem 
constructs as ‘grey’ information. In this regard, grey information theory may be a 
useful way to ascertain uncertainty and provide an overarching formal organizational 
framework in many GIScience arenas.  Essentially, grey information theory recognizes 
that some systems may consist of both completely known information and unknown 
information.  It differentiates such information in terms of white (known) and black 
(unknown) information and their interrelationships (Huang and Fan 2005).  A key idea 
in grey theory is the identification of the ‘whitenization function,’ with the purpose of 
improving the level of uncertainty of a particular system parameter, process, or data 
instance.  When this concept is extended to spatial systems, grey theory could be used 
to guide the design of new geocomputational tools intended to address and resolve 
uncertainty in modeling situations.   

More broadly, the implications of grey information theory for GIScience are 
quite numerous, including the possibility of developing new ways of formalizing 
uncertainty in spatial problems and the logical decomposition of spatial problems into 
known and unknown components.  A scan of recent research reveals there is relatively 
little exploration of grey concepts in the GIScience literature, with the few papers in 
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existence focussing on empirical and computational applications of selected grey 
concepts.  (Yeh and Li 2001, Yang et al. 2009, Horner 2010).  The present paper will 
comprehensively analyze some of the potential linkages between grey information 
theory and GIScience.  
 

3. Overview 
This paper consists of three major components.  First, a more complete background on 
grey information theory is given, including providing general formulations for grey 
systems concepts including the whitenization functions and their possible instances in 
GIScience. Secondly, an effort is made to compare grey information theory with other 
related but different conceptualizations of uncertainty in GIScience, particularly those 
involving fuzziness (Fisher 2000; Rashed and Weeks 2003; Silvan-Cardenas et al. 
2009), stochasticity (Sahinidis 2004; Lilburne and Tarantola 2009), as well as notions 
of complexity in general (Manson 2001; Ligmann-Zielinska and Jankowski 2007).  
Third, examples of grey systems are drawn from the author’s work in spatial modelling 
for hazard management (Horner and Widener 2009), network uncertainty (Horner 
2010), and household energy conservation behaviour (Horner et al. 2010). In these 
cases, grey information theory is critically discussed as a possible organizing principle 
for conducting uncertainty experiments and simulations of human behavioural 
response.  
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Abstract 

GeoComputation and Dialect Lexicography: 
Ways to increase insight during an interdisciplinary partnership 

 
Much information is inherently spatial in dialectology and dialect lexicography: the 
distribution of a word variant, the areal extent of a specific phonetic type, the 
movement patterns of morphologic types during time, the spread of a specific 
semantic realization, the source of a bibliographic reference, the birth location of a 
collector, etc. Both, geographers and dialect lexicographers have assembled massive 
amounts of analogue and digital information with spatial attributes. 
 
In this talk the author reflects the role of GeoComputation and GeoInformation 
concerning projects of the human sciences dealing with examples of the field of 
dialect lexicography.   
The author will give an overview of this interdisciplinary partnership and examples for  
increasing insight within the last 100 years (cf Lameli 2010, Ramisch et al 1997, 
Scholler 1973, Schrambke 2010, Schreibmann et al 2004). Furthermore she will 
discuss future prospects of the development (cf Göbl 2008, Perea 2008, Rumpf et al 
2010, Wandl-Vogt 2010) of this fruitful partnership in the cyberscience surroundings 
(cf Nentwich 2003).  
 
First, the author of this paper will discuss the role space plays in dialectology and – 
especially – in dialect lexicography and give some overview of the origins of dialect-
lexicographic endeavour (cf Moulin 2010).  
Second, she will inform about the lexicographers work on the example of the mayor 
dialect-lexicographic enterprises, also known as territorial dictionaries ‘Territorial-
wörterbücher’ or diatopic dictionaries ‘diatopische Wörterbücher’, of the upper 
German dialect family (cf Badisches Wörterbuch, BWB, Ostfränkisches Wörterbuch, 
Schweizerisches Idiotikon, Schwäbisches Wörterbuch, SdWb, WBÖ). She will give a 
short overview of the mapping of them (cf Moulin 2010) and will focus mainly the 
handling of space and location information units in the dictionary context. 
 
In the main part she will discuss how Geography (e.g. Cartography, Geoinformation, 
Geocomputation) and dialect lexicography were matched together formerly (e.g. on 
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dialect atlas projects, cf Lameli 2010, Schrambke 2010) and nowadays (cf Praxmarer 
2010, Perea 2008, Rumpf et al 2010, Wandl-Vogt 2006 and 2010).  
She will pick up especially the example of the project framework Database of 
Bavarian dialects of Austria electronically mapped (dbo@ema) [2007-2010] of the 
Institute for Lexicography of Austrian Dialects and Names of the Austrian Academy of 
Sciences to exemplify data analysis tools and presentation of results (cf Scholz et al 
2008, Wandl-Vogt 2006 and 2010).   
Within the framework of this project a web based system (cf wboe.oeaw.ac.at) 
consisting of a database for heterogeneous dialect data, a desktop-application to edit 
the data, a website to present the data and a web-application to visualize the data 
was established. The main focus of materials open to public since 1st of July 2010 is 
a collection of fungi (cf Piringer et al 2010) and source material belonging to the 
Dictionary of Bavarian dialects of Austria (WBÖ), the mayor Austrian dialect-
lexicographic enterprise of the Austrian Academy of Sciences (establishment of the 
nowadays institute in 1911, collection of materials since then, published since 1963, 
data base development since 1993). 
She will give an outlook of future prospects; efforts that are at the time being part of 
linguistic yet not lexicographic research: She will discuss on some examples, how 
new methods of interdisciplinary dialectology and geo-information or geo-statistics 
could increase insight of dialect lexicography: dialectometry and dialect-lexicography 
(cf Göbl 1998, ders. 2008, Rumpf et al 2010), GIS-systems and dialect-lexicography 
(cf Praxmarer 2010, Scholz et al 2008, Wandl-Vogt 2010), analyzing tools for dialect-
lexicography (cf Nerbonne 2010, Praxmarer 2010), visualising tools (maps for non-
linguists cf Upton 2010) and perceptual dialectology (cf Preston 1989 and 2010). She 
will open the discussion with some proposals she suggests. 
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Abstract 

Salts tend to concentrate on the soil surface in dry and irrigated areas. As salinity 

increases, more salts will appear at the soil surface, favouring the use of conventional 

remote sensing tools. Rapid identification and large-scale mapping of salt-affected soils 

will help improve salinity management in watersheds and ecosystems. Potentiality of 

various sensors is important in detecting saline soils and salt crusts. Therefore, in this study 

we evaluated the data of ASTER and LISS III sensors in Playas of DAMGHAN, KASHAN 

and MAHARLOO regions, IRAN. The first, the imageries corrected and then we used 

PCA, NDVI and band ratioing in detecting of saline soils. In band ratioing method, two 

index were applied, NDSCI and RSCI. Investigation of feature space graphs in saline and 

non-saline soils indicated that NDSCI and RSCI had the best separatiability. Then, the 

maps of this soils prepaired. In this maps, saline soils with salt crusts were perfectly clear. 

Relative calibration of visible and near infrared in applied approach showed, band ratioing 

and using of these two indexes(NDSIC and RSCI) were very efficient. In addition, in 

general the ASTER data were better than of LISS III data in separation of saline soils and 

non-saline.   

Keywords: ASTER Data; Calibration; DAMGHAN; IRAN; KASHAN; LISS III; 

MAHARLOO; NDSCI; RSCI; Salinity; Salt crusts. 

2.Methods 

2-1-Study area 

In this research three desert area include DAMGHAN, KASHAN and MAHARLOO were 

chosen. Figure 1 shows the situation of these areas in IRAN.  
. 
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 Figure 1. The location of study areas 

 
2-2-Research methodology 
   2-2-1-Satellite images. 
Tabe 1 shows the summery characteristics of sensors used. 

 
Table.1 summery characteristics of sensors 

sensor area Acquisition date 
 

 

LISSIII 

DAMGHAN NOV 2007 
KASHAN JUL 2007 

MAHARLOO JUL 2006 
 

 

ASTER_L1B 

DAMGHAN SEP 2002 
KASHAN JUN 2000 

MAHARLOO JUL 2002 
 

 

 

 

2-2-2 Pre-processing of satellite data  
In order to control the quality of used data and identify what extent of the systematic 

and non-systematic errors are fixed or remain after the systematic correction, the data were 

verified and determined all data used in this study, have standard corrections. 

 
2-2-3 Alternative Calibration Method  

     For sensor calibration, due to the unavailability of sufficient information of study 

areas atmospheric conditions, the alternative method of relative calibration was devised. In 

this research the salt crusts of study areas were used for the relative calibration of LISSIII 

and ASTER sensors based on spectral reflectance method. 
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2-2-3-1 LISSIII sensor calibration 
Using expression (1), the pixel DN of LISSIII sensor calibrated data convert to 

radiance: 

(Slater, 1999). In this study, the following equation for the calibration of bands 2, 3 and 4 

of LISSIII sensor were used: 

         (1) 

DNL 
128

005148
2

.

  
 

DNL 
128

644.156
3  

DNL 
128

543164
4

.
 

 

2-2-3-2 ASTER sensor calibration 
To convert from DN to spectral radiance of ASTER L1B calibrated data used 

equation(2): 

Lλ = (DN-1).UCC   (2) 
 

Where Lλ is the sensor spectral radiance in w/(m2.sr.μm), UCC is unit conversion 

coefficient in (w/(m2.sr.μm)) (Markham, 2005). In this study, the following equation for 

the calibration of bands 1, 2 and 3 of ASTER sensors were used : 

67601
1

.)(  DNL  

70801
2

.)(  DNL  

862.0)1(3  DNL  

After convert and calculate the radiations of visible and NIR bands of LISSIII and ASTER 

sensors, the equation (3) were used to convert the radiance to reflectance: 

=   (3) 

 

Where ρp is the amount of reflectance that is a quantity without unit, Lλ is the input spectral 

radiance of sensors (w /m2.sr.μm), d is the Earth-Sun distance in astronomic unit depends 

on Day, Year, Solar Zenith Angle, the time of image taking, latitude and longitude. ESUNλ 

is the solar exoatmospheric irradiance in the top of the atmosphere in band λ (w / 

(m2.sr.μm)), and θs is the Solar Zenith Angle at the image acquisition time in degree 

(Markham, 2004). 

 

3- Results 

   3-1- Correlation of sensor bands LISSIII 
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Correlation of LISSIII sensor in Kashan area
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Figure 2. Correlation trend charts of LISSIII sensor in DAMGHAN, KASHAN and MAHARLOO area  

 
  As seen in figure (2), bands 2, 3 and 4 have a high correlation with each other. Band 5 

shows less correlation with other bands, so this band has diverse information than others, 

thus band5 low correlation with other bands indicating the existence of fairly useful 

information on this band and requirement of its applications to identify the salt crusts. 

 

3-2- Surveillance of bands correlation of ASTER sensor  
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Correlation of ASTER sensor in Kashan area

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

B1 B3 B5 B7 B9 B11 B13

Bands

R

Band1

Band2

Band3

Band4

Band5

Band6

Band7

Band8

Band9

Band10

Band11

Band12

Band13

Band14

Correlation of ASTER sensor in Damghan area

-1.5

-1

-0.5

0

0.5

1

1.5

B1 B3 B5 B7 B9 B11 B13

Bands

R

Band1

Band2

Band3

Band4

Band5

Band6

Band7

Band8

Band9

Band10

Band11

Band12

Band13

Band14

Corrlation of ASTER sensor in Maharlo area

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

B1 B3 B5 B7 B9 B11 B13

Bands

R

Band1

Band2

Band3

Band4

Band5

Band6

Band7

Band8

Band9

Band10

Band11

Band12

Band13

Band14

 
Figure 3. Correlation trend charts of ASTER sensor in DAMGHAN, KASHAN, and MAHARLOO area  

 
     As shown in figure 3, band1 and band 3 have a great correlation. Near infrared, 

middle infrared and thermal infrared bands have a great correlation too. Therefore low 

correlation between near infrared, middle infrared and thermal infrared bands with visible 

bands indicates existence of useful information in these bands and necessity of use this 

information to recognize salt crust. 

 

3-3- Principal Component Analysis  
Variance percentage of principal component analysis (Figure 4) shows that more than 90% 

of information is concentrated on first and second component, after compressing. Thus, 

first and second component have useful information about salt crusts which extractable in 

both form of visual and digital. 
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Figure 4. PCA Chart percent variance of LISSIII and ASTER sensors in DAMGHAN, KASHAN, MAHARLOO 
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3-4- Spectral Rationing 
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Figure 5. Average spectral reflection curves of DAMGHAN, KASHAN, and MAHARLOO salt areas in 

spectral band of LISSIII and ASTER sensor 

 
     On the basis of analysis of salt crusts spectral reflectance average curve, we can realize 

that difference value of salt crusts spectral reflectance in visible and middle infrared, is too 

high. In this research two new indices of salt crust have been introduced with regard to the 

characteristics of ASTER and LISS III sensors in arid and semi-arid condition of desert 

region. 
 

3-4-1- Ratio Salt Crust Index 
Ratio salt crust index is the simplest salt crust index and is defined as; 

 

 (4)  
 

This index, have a simple formula from the point of view of calculation and its values 

domain is between 0 and 1, so that the values toward 0, indicates salt crust. 

 

3-4-2- Normalized Difference Salt Crust Index 
Normalized difference salt crust index is defined as; 

(5) 
 

 
This index, have a similar treatment with RSCI salt crust index from the viewpoint of 

operation. 

 

3-5- Thresholding 
For evaluating separation capability of first and second component, NDVI vegetation index 

also RSCI and NDSCI indices, first, images of ASTER and LISS III sensor bands with 
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images obtained from first and second component, also NDVI vegetation index and RSCI 

and NDSCI salt crust indices, were put into a map list and then pseudoscopic color image 

were produced. Through visual interpretation on pseudoscopic color image, training classes 

of salt crust and non- salt crust were selected and displayed on monitor by feature space 

diagram simultaneously. After samples were selected, feature space diagram of pixel 

dispersion were evaluated and at the end, samples were modified by evaluation of feature 

space diagram of training classes with regard to this issue that pure pixel of salt, must 

separate from other pixels, to identify salt crust. Therefore capability of images which 

obtained from first and second component, also NDVI vegetation index and RSCI and 

NDSCI salt crust indices, was evaluated by feature space diagram. After repetitious 

examination of feature space diagrams, specified that RSCI and NDSCI salt crust indices 

shows the best discrimination capability for salt crust and non-salt crust classes. ( Figure 6 

and 7). Thus, in final step, threshold values between 0 and 255 were used to have more 

certainty about RSCI and NDSCI salt crust indices discrimination values. Different 

thresholds for RSCI and NDSCI salt crust indices were determined by trial and errors and 

finally thematic maps that include salt crust and non-salt crust classes were obtained, in 

which salt crust discriminated perfectly. (figure 8 and 9) 

 

 
Figure 6. The scatter of pixels in two dimension space for RSCI and NDSCI indices of LISSIII in 

DAMGHAN, KASHAN, MAHARLOO areas 
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Figure 7. The scatter of pixels in two dimension space for RSCI and NDSCI indices of ASTER in 

DAMGHAN, KASHAN, MAHARLOO areas 

 
Figure 8. The image results of RSCI and NDSCI indices thersholding for LISSIII sensor in Damghan, 

Kashan and Maharloo area 
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Figure 9. The image results of RSCI and NDSCI indices thersholding for ASTER sensor in Damghan, 

Kashan and Maharloo area 

 

3-6- Superseding Calibration of ASTER and LISS III Sensors 
After evaluation of salt crusts in studied areas, brightness value according to 1 and 2 

equations, converted to receiving spectral radiation of satellite sensor. Correlation between 

brightness value and spectral reflectance was evaluated by calibration curve through 

overlaying of information layers of  brightness value and calculated spectral reflectance for 

each visible and near infrared bands of ASTER and LISS III sensors, also performing cross 

instruction in ILWIS software. Figure 10 shows calibration curve of each visible and near 

infrared bands of LISS III sensor and Figure 11 shows calibration curve of each visible and 

near infrared bands of ASTER sensor in Damghan region. Calibration curve of Kashan and 

Maharlou, are the same with Damghan calibration curve. 
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Calibration Curve of LISSIII sensor in Damghan area
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Figure 10. Calibration curve of visible and NIR bands for LISSIII sensor in Damghan area 

 

Calibration Curve of ASTER sensor in Damghan area
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Figure 11. Calibration curve of visible and NIR bands for ASTER sensor in Damghan area 
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4- Conclusion 
1- Analyzing the result of information obtained from ASTER and LISS III sensors shows 

that every three groups of  ASTER bands have different band width and brightness value  

with respect to LISS III sensor .Thus the information of ASTER does not compare with the 

information of LISS III. In addition to, correlation process between the bands of LISS III 

and ASTER sensors is different with regard to geographic situation and salt marsh 

conditions of Damghan, Kashan and Maharloo, such as salt type, humidity, density of 

vegetation coverage and etc. Different status of salt marshes condition in different months 

or different seasons of the year is one of the effective parameters on band correlation. 

2- Evaluating spectral reflection of salt marshes in different sensor bands can help us to 

study and identification of those. Optimum selection of bands is an important factor to salt 

marshes identification in spectral rationing method. In this method, reliable land data and 

information or personal experiment is important and required. Beside of complementary 

information requirement, much dependence on used sensor and its characteristics such as 

number of bands, band width in electromagnetic spectrum and its resolution, is one of the 

weak points of spectral rationing method. Also, accuracy of the results, depend on bands 

combination which is used for spectral rationing. Visible and middle infrared parts of 

spectral bands are suitable for identification of salt marshes. The reason of this 

circumstance, is, high reflection of salt marshes n visible and high absorption in middle 

infrared parts of electromagnetic spectrum. We can enhance and recognize the regions that 

have high percentage of salt by generate ratio between visible and middle infrared parts of 

electromagnetic spectrum. Therefore with accurate selection of visible and middle infrared 

spectral bands and generating ratio between them, salt marshes are recognized better. In 

this research by definition of salt marshes indices such as RSCI and NDSCI with regard to 

the characteristics of ASTER and LISS III sensors, salt marsh recognized better. The 

importance of salt marsh indices, RSCI and NDSCI, depend on the data type which used 

and salt covering surface. These indices can be use to study of the salt marshes of desert 

regions.  
3- Thresholding is an information exploitation method to identify salt marshes which assign 

the amplitude pixel value to the desired class. Although accurate determine the desired 

amplitudes are not possible easily and always performed by trial and error. For perform 

thresholding, quantities of amplitudes are determine by user with regard to situation of the 

area, complementary information, science and adequate experiment. The best and optimum 

quantities are usually obtain in a trial and error process and examination of pixel dispersion 

in two-dimension diagram.  

4- Comparison the correlation between brightness degree and spectral reflection of 

calibration diagram of each bands of visible and near infrared which obtained from ASTER 

and LISS III sensors, shows that use of salt marsh in maximum spectral reflection 

quantities, will reduce errors arising from atmospheric effects and sensor calibration. 

Existence of linear relation and high specification index in each visible and near infrared 

bands of ASTER and LISS III sensors, indicate that high percentage of changes (more than 

80%) depend on spectral reflectance of salt marsh and low percentage of changes (less than 
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20%) impressed by unwanted parameters such as atmosphere and etc. therefore salt 

marshes can be use to calibration of satellite sensor in visible and near infrared bands. 
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Abstract 

Satellite imagery is a longstanding and effective resource for environmental analysis 

and monitoring at local, regional and global scales.  Thematic map accuracy continues 

to be problematic; especially when Boolean representations are used as each image 

pixel is assumed to be pure and is classified to one and only one class. In reality the 

pixel may be mixed, containing many classes. This paper will describe the field work 

that was undertaken to validate the fuzzy change estimates arising from fuzzy set 

classification. The main objective of this paper to carry out a comparative study of 

different accuracy assessment measures to check the accuracy of fuzzy classified 

images. By using different models to determine the validation of soft classification, to 

check the accuracy of fuzzy classified images, complete information about the class 

proportions in each pixel are required to be known.  

Fuzzy classifications may be useful as multiple class memberships are assigned. A 

membership function is defined for each class against the feature value (digital 

numbers) and membership values of a class to belong to a particular pixel are 

determined based on function definition. Quantifying classification accuracy is an 

important aspect of map production as it allows confidences to be attached to the 

classifications for their effective end use. Accuracy measures serve as the analysis of 
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errors, arising from the classification process due to complex interactions between the 

spatial structure of landscape, classification algorithms, land cover change and sensor 

resolutions.. Therefore, other accuracy measures may appropriately including the 

fuzziness in the classification outputs and/or reference (ground) data. These include . 

Measure of closeness distance, Euclidean Distance, fuzzy set operators, and fuzzy 

error matrix based measure.  Generally, the confusion matrix compares ground 

observations for a given set of validation samples with the classification result.  

From the results of accuracy indices for user defined and actual classification, it can be 

said that all of the measures methods can be used successfully to check the fuzzy 

accuracy of classification 

 

 

1. Introduction  

The study area is located in North West Libya (the capital city Tripoli and surrounding 

regions) and this area contains different types of land use and land cover. These 

include urban, forest; agriculture area .The extent of land patches is frequently small 

leading to a prevalence of mixed pixels. The study area is subject to rapid changes in 

land cover and land use due to increases in population, and human activity and 

requirements for, more urban land, and food production.   

In generally the accuracy assessment is based on the accuracy or confusion matrix, 

which compares ground truth data with the equal classification for a given set of 

validation samples (Congaltion et al., 1999; Foody, 2002). The accuracy matrix enables 

the source of the most common evaluation criterions firstly overall accuracy, secondly 

producer accuracy, finally user accuracy. A detailed overview is given by (Foody 2002; 

Congaltion et al. 1999). 

For the assessment of soft classifications in general, various suggestions have been 

made such as fuzzy error matrix, Entropy, cross Entropy and cross tabulation (Binaghi 

et al., 1999; Foody, 1995; Woodcock et al. (2000); Green et al., 2004; Lewis et al., 

2001; Pontius et al., 2006; Townsend, 2000). The fuzzy error matrix Binaghi et al. 

(1999) is one of the most attractive approaches, as it represents a generalization 

(grounded on the fuzzy set theory) of the traditional confusion matrix. Specifically, for a 
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cross-comparison to be consistent with the traditional confusion matrix, it is popular that 

the cross-comparison results in a diagonal matrix when a map is compared to itself, and 

that its marginal totals match the total of membership grades. More significantly, a cross 

comparison should convey readily interpretable information on the confusion between 

the classes. To date, the applicability of the fuzzy error matrix has been mostly 

concentrated on generating accuracy indices such as the overall accuracy, the user and 

producer accuracy, the kappa, and the conditional kappa coefficients ( Binaghi et al., 

1999; Okeke et al., 2006; Shabanov et al., 2005).       

 

2. Field survey 

 The fuzzy land cover information have been generated from remotely sensed data 

(different fuzzy classification) identifies fuzzy memberships to five land cover classes 

(urban, vegetation, woody land, grazing land and bear area). There are five predicted 

fuzzy membership values for each pixel. I undertook some field work, recording the sub-

pixel memberships at 210 locations. Each of the 210 pixels was sub-divided into 16 and 

the land cover recorded at each point. This gives me observed fuzzy memberships for 

the same five classes. In this paper we will compare the two sets of predicted and 

observed fuzzy memberships to determine some measure of fuzzy accuracy                                                                                             

 

 

 

 

 

 

 

3. Result and dissociation  
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Table 1 Membership of field points and classification points 

Membership of field points and classification points 

from fuzzy set classification 

Membership of field points and classification 

points from fuzzy C-mean classification 

 
 Scater plot 1 (a) urban 

 
Scater plot 1 (b) urban 

 
Scater plot 2 (a) Vegetation 

 
Scater plot 2 (b) vegetation 

 
Scater plot 3 (a) woody land 

 
Scater plot 3 (b) woody land 

 
Scater plot 4 (a) Grazing land 

 
Scater plot 4 (b) Grazing land 

 
Scater plot 5 (a) Bare area 

 
Scater plot 5 (b) Barea area 
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Generally these plots in table1show the degrees of membership of field points and 

classification points for all the classes, from the scatter plots there are many points 

scattered and there is a variation between the field points and classification points. The 

first column illustrates the field points and fuzzy set classification, the second column 

illustrates the field points and fuzzy C-mean, there is a bit difference between the two 

classification, these difference from training set which was taken it is not the same for 

both method. Generally the distribution of the points in both classifications is 

acceptable. 

                                                                                              

  3. Regression      

The regression was used to compare between the referenced data from the field and data from 

classification image. Table 2 illustrated regression statistics for multiple R and R² in the classes 

urban, vegetation, woody land, Grazing land and bare area,  the result from fuzzy set 

classification and fuzzy C-mean, when the R and R² are high that means there are a good 

correlation and good classification. From the table we can see that the R² and multiple R is 

higher in fuzzy set compared with fuzzy C-mean in all the classes and the value of R and R² in 

the urban class is the highest in fuzzy set (R=0.71725, R²=0.51445) and in fuzzy C-mean is 

(R=0.69495, R²=0.48295), the lowest value of R and R² in the bare area class in fuzzy set is (R= 

0.56127 and R²=0.31663), and in fuzzy C-mean (R=0.48901, R²=0.23917) this gives indication 

that the urban class more accurate than the others, the reason for that the bare area and vegetation 

classes were changing from time to time and from season to season.                                                                                                                                                                          

 

                         

 

 

 

 

 

Table 2 illustrated regression statistics for R² and multiple R for fuzzy set classification and fuzzy C-mean 
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4. Conclusion  

Accuracy assessment of soft classifiers is still a big issue. This study studied methods 

to evaluate the performance of soft classifiers but they are sensitive to the use of a 

higher accurate proportion coverage of each informational class per pixel as a soft 

ground truth data which in practical situations is sometimes a bit difficult to obtained. It 

is needed to conduct further investigation on how we can assess soft classifiers taking 

into consideration the multiclass assignment problem and using soft ground truth data. 

Among these the Euclidean distance may be stated to be the best method since this 

measure takes into account the ambiguity and vagueness in the data, can be used for 

any probability distribution and provides a suitable accuracy index of classification also. 
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1. Introduction  
This abstract introduces an ongoing research project addressing multi-dimensional and 
relational complexity of urban environments by the application of data mining as a 
methodology of knowledge discovery in micro-scale urban feature analysis. This research 
is an attempt to establish a link between knowledge discovery methodologies and 
automated urban feature analysis. After presenting our motivation, research questions and 
our methodology, an application of data mining of urban features will be briefly 
introduced in this abstract.  

2. Motivation 
By the beginning of the 1960’s, as planning as a design-led practice seemed to fail to 
explain how urban processes occur, many urban theorists started to criticize the analysis 
of urban system from the perspective of few interrelated factors, without considering the 
multi-dimensionality of the system in a deductive fashion (Jacobs, 1961, Lefebvre, 1970, 
Harvey, 1973, Alexander, 1979). Hence, in the scope of this research, main motivation is 
that, in urban analysis, there is a need to advance from traditional one-dimensional 
(Marshall, 2004) description and classification of urban forms (e.g. Land-use maps, 
Density maps) to the simultaneous consideration of multi-dimensional aspects of urban 
systems. For this purpose, data mining is proposed as an analysis methodology for urban 
feature analysis. When applied to discover relationships between urban attributes, data 
mining can constitute a methodology for the analysis of multi-dimensional relational 
complexity of urban environments (Gil, et al., 2009). There are several recent studies of 
data mining applications in the domain of urban and geographical research such as works 
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of Demsar, 2006, Reffat, 2008, Behnisch and Ultsch, 2008, Liu and Seto, 2008, Cheng 
and Wang, Cheng and Anbaroglu, 2009 Christopoulou, 2009, Gil, et al., 2009. 

3. Research Questions and Methodology 
This research aims to address multi-dimensional and relational complexity of urban 
environments by applying data mining as a methodology of knowledge discovery in 
urban feature analysis, with a particular interest in exploring the patterns and 
relationships of micro-scale data in Beyoglu (a historical neighbourhood of Istanbul) as 
an application area. Two main research questions are formulated: 
• What knowledge can be extracted from existing conventional urban analysis maps 

of Beyoglu, by the application of data mining methodologies? How this 
knowledge can be represented? 

• Could data mining of urban attributes can produce valuable results and assist 
architects and urban planners at design, policy and strategy levels? 

Within the scope of this research, a methodology is developed specifically for 
formulation and analysis of an urban database of Beyoglu. This methodology consists of 
the application of data mining into a GIS based urban database built out of official real 
data of Beyoglu, operating in three stages; Database formulation, Database analysis and   
Database evaluation. This methodology, applied in Beyoglu, is illustrated in Figure 1. 

 

 
Figure 1. Methodology of knowledge extraction from urban data by data mining 

 
In the following section, an application of the developed methodology will be 

explained through its stages. 

3.1 Database Formulation 
In this first stage, micro-scale urban data of Beyoglu is extracted from the various urban 
analysis maps of 2008 Master Plan of Preservation of Beyoglu provided by the Istanbul 
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Metropolitan Municipality (IBB). In Table 1, there is a list of urban feature data included 
in the database as urban attributes. 
 

Attributes 
Att.1-17 Land Use_Ground Floor,  Att.16 Land Use_2nd Penthouse 
Att.2 Land Use_1st Floor        Att.17 Land Use_3rd Penthouse 
Att.3 Land Use_2nd Floor Att.18 Neigborhood Name 
Att.4 Land Use_3rd Floor Att.19 Density (Person/Ha) 
Att.5 Land Use_4th Floor Att.20 Presence in the Bosphorus Silhouette 
Att.6 Land Use_5th Floor Att.21 Building Maintenance Conditions 
Att.7 Land Use_6th Floor Att.22 Building Construction Style  
Att.8 Land Use_7th Floor Att.23 Empty floor ratio 
Att.9 Land Use_8th Floor Att.24 Ownership 
Att.10 Land Use_9th Floor Att.25 Density of Registred Buildings 
Att.11 Land Use_10th Floor Att.26 Factor of Constructable Land (k.a.k.s) 
Att.12 Land Use_1st Basement Floor Att.27 Registred Places for Preservation 
Att.13 Land Use_2nd Basement Floor Att.28 Ground floor surface area 
Att.14 Land Use_3rd Basement Floor Att.29 Distance to Galatasaray 
Att.15 Land Use_1st Penthouse Att.30 Distance to Taksim 

 
Table 1. Classification of processed urban attributes of Beyoglu  

 
Available data of the historical neighbourhood of Istanbul covers several scales (from 
district to block, street, building and building floor) and different forms of classification 
themes including density, land-use, land value, ownership, material, physical conditions, 
road attributes, geological attributes and mobility infrastructure and more. There are 
11,985 buildings, 700 building blocks, 30 neighbourhoods included in the urban database 
of Beyoglu preservation area (approx. 3,500,000 m2). The attributes (namely urban 
features of Beyoglu) of these buildings, building blocks and neighbourhoods are stored in 
the attribute table available in GIS.  So far, in total, there are 30 attributes processed in 
the form of data table, ready for data mining, 27 attributes gathered from the Beyoglu 
Master Plan Analysis maps and 3 attributes calculated in GIS are processed in the form of 
data table. 

3.2. Database Analysis and Evaluation 
After the formulation of a micro-scale urban feature database for Beyoglu, this urban 
database is analyzed by Rapid Miner open-source software and the results are evaluated. 
The data mining analysis is concerned with the investigation of these generic questions; 

• Are there significant recurrence patterns of attributes of the land? 
(Identification of groups, clusters, strata, or dimensions in data that display no 
obvious structure) 

• How dependent and independent are these attributes? (Identification of 
associations and links among attributes, factors that are related to each other) 
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• How influential are these attributes on a particular urban phenomenon? 
(Identification of factors that are related to a particular outcome of interest 
(root-cause analysis)  

Specifically, an analysis of data mining will be briefly introduced here, as an attempt 
to investigate second question listed above. Naïve Bayesian Method of Classification is 
applied for predicting the land use value of ground floor (Att.1) of the buildings by means 
of other attributes; land use value of first floor (Att.2), density of person (Att.19) living in 
the building and neighborhood (Att.18) where the building is located, distance to Taksim 
(Att.30), distance to Galatasaray (Att.29), building surface area (Att.28). In Table 2, 
below, there is a list of these attributes and their value range, subject to this data mining 
application.  
 

  Attribute 
Urban 
Entity Level Values Value Type 

Att.1 

Land 
Use_Ground 
Floor 

Building 
Floor 

{Residential, Business-Shopping, Social 
Infrastructure, Technical Infrastructure, 
Accomodation, Open Space, Empty, 
Other} 

8 nominal 
categories 

Att.2 
Land Use_1st 
Floor 

Building 
Floor 

{Residential, Business-Shopping, Social 
Infrastructure, Technical Infrastructure, 
Accomodation, Open Space, Empty, 
Other} 

8 nominal 
categories 

Att.18 
Neigborhood 
Name Neigborhood 

{Arap Camii, Asmalimescit, Bedrettin, 
Bereketzade, Bostan, Bulbul, 
Catmalimescit, Cihangir, Cukur, 
Emekyemez, Evliya Celebi, Firuzaga, 
Gumussuyu, Hacimimi, Huseyinaga, 
Kalyoncu Kullugu, Kamer Hatun, Katip 
Musafa, Kemankes, Kilicali Pasa, 
Kocatepe, Kuloglu, Mueyyetzade, 
Omeravni, Purtelas, Sahkulu, 
Sehitmuhtar, Sururi, Tomtom, 
YahyaKahya} 

30 nominal 
categories 

Att.19 
Density 
(Person/Ha) 

Building 
Block 

{0-100, 100-200, 200-300, 300-500, 
500-750, 750-1000, 1000-1500, 1500-
2000,  2000+, non person living} 

10 nominal 
categories 

Att.28 
Ground floor 
surface area Building 

{0-34 m2, 35-48 m2, 49-61 m2, 62-
81m2, 82-114 m2, 115-187 m2, 187-
17928 m2} (Quantile Classification 
Method) 

7 numeric 
categories 

Att.29 
Distance to 
Galatasaray Building 

{0-293 m., 294- 451 m., 452-588 m., 
588-721 m., 722-872 m., 873-1048 m., 
1049-1508 m.} (Natural Breaks, Jenks 
Classification Method) 

7 numeric 
categories 

Att.30 
Distance to 
Taksim Building 

{ 0-450 m., 451-693 m., 694-919m., 
920-1178, 1179-1453m., 1454-1728m., 
1729-2071m.} (Natural Breaks, Jenks 
Classification Method) 

7 numeric 
categories 

Table 2. Selected urban entities, their attributes and range of attribute values 
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Below in Figure 2, there is a Rapid Miner screenshot illustrating the process of data 
mining consists of applying a Naïve Bayesian learning operator and a cross-validation in 
order to estimate the performance of the learning operator.  
 

 
Figure 2. Process of data mining in Rapid Miner 

 
First test is to predict Att.1 by Att.2. Results of this process can be seen in Figure 3, in 

the form of accuracy table, given by Rapid Miner software.  
 

 
Figure 3. Accuracy table  

 
As seen in the table, the overall accuracy of prediction is 74.63 %, which is significant 

in terms of claiming a dependency relationship between the land-use values of ground 
floor and first floors of the buildings in Beyoglu, in general. In case of residential use of 
ground floor for instance, the model predicts 3689 of the residential as residential and 
179 of the residential as false, which gives a 95.37% class recall. More, the model 
predicts 149 of the accommodation as accommodation and 4 of the accommodation as 
false, which gives a 97.39% class recall. The model is successful in predicting the land-
use values in case of other uses (96.90%), residential (95.37%), accommodation 
(97.39%), empty (79.32%) and open spaces (99.29%) uses. On the other hand, the model 
do not return significant results in case of business-shopping (58.19%), socio-cultural 
infrastructure (40.83%) and technical infrastructure (25.64%). This means that, to some 
extend in general, land use value of first floor of the building is dependent on the land use 
value of the ground floor. This hypothesis is especially valid in case of other uses, 
residential, accommodation, empty and open spaces uses.  

After completing all the tests of this analysis with the rest of the attributes (Attributes 
18, 19, 28, 29, 30) similar to the test introduced above, briefly we found that to a large 
extend in general, land use value of first floor is the most influential attribute among 
others, on determining the land use value of the ground floor. Neighborhood of the 
building and density of person living in the building are influential on determining the 
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land use value of the ground floor only in case of residential use with a class recall over 
%80. Distance to Taksim and Galatasaray (major transportation nodes in Beyoglu) are 
both not influential on determining the land use value of the ground floor, although in 
residential and business-shopping cases it can be claimed that there is a small degree of 
dependency which is over 60%. Surface area of the building is not influential on 
determining land use value of the ground floor in general, except significantly, in case of 
business-shopping use there is an accuracy level of 74.50%. These hypotheses must be 
certainly verified by means of other analysis methods in order to test their validity. Still 
the results are inspiring enough to expect that this kind of relational analysis methods of 
urban features could result in valuable site-specific knowledge. 

 

4. Conclusion 
Methodology of urban feature analysis applied in this research provides a multi-
dimensional study of urban entities meaning that how each attribute of an entity is related 
to the other(s). Not only one kind of attribute is in interest, many of them are considered 
in a simultaneous manner. Departing from classical one-dimensional description of urban 
features’ attributes, by means of the computational methods, this research looks for 
capturing the interrelations among those attributes. Hence, the focus of the analysis is on 
the relationships that exist within the order of an urban area rather than a conventional 
description of this urban order. More, microscopic or detailed view of urban system 
proposed in this research by relying on micro-scale data, provides a way of exploring 
urban system as complex as it is, allowing a deeper understanding of the system. Finally, 
data mining seem to provide a promising way of addressing multi-dimensional and 
relational complexity of urban environments by enabling to explore hidden patterns and 
relationships among urban features. 
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1 Introduction

In spatial sampling, once samples of the primary variable have been collected, it

is possible to augment the initial set by collecting additional measurements at other

locations, a method known as second-phase sampling (Cressie 1991, Muller 1998, van

Groenigen and Stein 1998 and recently de Gruitjer et al. 2006). Following a first

sampling phase, the kriging variance is computed at each location using a covari-

ogram function. Generally, additional observations are gathered away from existing

points, that is where the kriging variance is large (see for instance Van Groenigen

and Stein 1998). However, when the process under study is not stationary, sam-

pling efforts should be directed in those strategic locations exhibiting strong spatial

variation locally (Delmelle and Goovaerts 2009). In this paper, we formulate these

two objectives into a single weighted-objective function -referred to as the weighted

kriging variance-, where the weights reflect the roughness of the spatial process.

This objective function is highly non-linear (inversion of covariance matrices), and

calls for robust heuristic methods. Additional samples can be collected sequentially,

for instance by adding one sample at a time to the initial set. This procedure may

be suboptimal but fast since it requires the inversion of a matrix augments by only

one entry.

Practically, a covariogram summarizing the spatial variation in the observed variable

with distance is determined following the collection of initial samples. Based on the

covariance structure, the kriging variance is computed at each grid node, and weighted

by the local variation at that node. The objective consists of locating those additional

samples strategically to maximize the change in weighted kriging variance. Heuristic

methods decide on the location of new samples. For instance a greedy algorithm

will allocate additional observations on the peaks of the weighted kriring variance

1
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surface but these local maxima may not be optimal to the objective function. In this

paper, we propose a combination of heuristic methods: first, additional samples are

determined using a sequential greedy algorithm and the objective function evaluated.

Second, the points obtained using a greedy algorithm are used as a starting solution

in simulated annealing. Through a swapping procedure, additional points are ex-

changed for other potential points, while the objective function is recomputed. This

metaheuristic procedure combines the advantage of the greedy algorithm, that is its

rapidity, with simulated annealing, which is recognized for its convergence towards

optimal solutions.

2 Additional sampling methodology

A variable of interest Y has been measured at m locations within a study region,

D. Measurements are denoted y(si), ∀i = 1 . . .m (Goovaerts 1997). Using data

values of the primary variable and a covariogram function, the kriging variance at a

gridpoint sg: (
σk(sg)

)2

= σ2 − cT (sg) ·C
−1 · c(sg), (1)

where C−1 is the inverse of the covariance matrix C based on the covariogram func-

tion. The term c is a column vector and cT its corresponding row vector. The

Average Kriging Variance (AKV ) is obtained by integrating Equation 1 over the

area D. Computationally, discretizing D over a fine grid of points (set G):

AKV =

∫

D

(
σk(sg)

)2

≈
1

⌊G⌋

∑

gǫG

(
σk(sg)

)2

(2)

Our first objective Z[S] is to select a set of n points to our exisiting set of m samples,

which will maximize the change in kriging variance by as much as possible. This

process can be thought as a simulation of what the change in kriging variance is

expected to be, without having to collect additional points, assuming the covariogram

structure would remain constant (Burgess, Webster and McBratney 1981 as well as

Cressie 1993). Specifically:

Maximize︸ ︷︷ ︸
{sm+1,...,sm+n}

Z[S] =
1

⌊G⌋

∑

gǫG

(
σold

k (sg)
)2

−
(
σnew

k (sg)
)2

, (3)

where S denotes the sampling scheme. The set P of p potential points is obtained by

discretizing D, generating a total of
(

p

n

)
possible sampling combinations.

The kriging variance is unfortunately misused as a measure of reliability of the kriging

estimate, as noted by several authors (Deutsch and Journel 1992; Armstrong 1994).

2
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It is merely a function of the sample pattern, sample density, the numbers of sam-

ples and their covariance structure. The kriging variance assumes that the errors are

independent of each other, which means that the process is stationary, an assump-

tion violated in practice. Figure 1 illustrates the limitation of the kriging variance

(Armstrong 1994), the objective being to interpolate the value of the inner grid point,

highlighted with a question mark. The interpolation is a function of the values at

the four surrounding observations. In scenario b, three very similar values and an ex-

treme one. The scenario in a however shows four data values in a very narrow range.

Assuming a similar spatial structure in both cases and given that the configuration of

the data points is the same, the kriging variances are identical, and so are the kriged

estimates. Nevertheless, since there is much less variation among its neighbors, the

left-hand side scenario is a much safer option than the right hand-one when it comes

to estimating the value of the primary variable.

!(

!(

!( !(!(

11

8 9

12

?

(a)

!(

!(

!( !(!(

2

1 0

37

?

(b)

Figure 1: Example of two-dimensional nonstationarity. Dark points are used as data values to
interpolate the center point (light gray). After Armstrong (1994).

This example illustrates the importance to account for local variations in the ob-

served variable. Let ŷ(sg) be the interpolated value of the primary variable Y at a

grid node sg. Estimating by how much that grid node is different in value from its

surrounding points sj (j = 1, 2, . . . J) is possible through a filter process, specifically,

a circular filter is constructed around each grid node sg that encompasses its neigh-

bors. For illustration purposes, Figure 2 illustrates a 3 by 3 window, however the

methodology can handle various neighborhood sizes. To determine an appropriate

moving window size J , we compute the squared difference in interpolated value be-

tween the central grid node ŷ(sg) and the surrounding ones ŷ(sj). We also introduce

a distance factor d(sj , sg) and a parameter β, both regulating the importance given

to nearby points. This is then summed over the set G. The weight λ(sg) becomes:

λ(sg) =

J∑

j=1,j 6=g

d(sj, sg)
−β ·

(
ŷ(sj) − ŷ(sg)

)2

∑J

j=1,j 6=g d(sj, sg)−β
(4)
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Figure 2: A 3× 3 moving window: a circle is passed around a grid node within a specific distance.

If the neighborhood J is kept constant, λ(sg) will exhibit great values when β < 1,

because more weight is given to far away data points. As β increases, λ(sg) decreases

and flattens out for high values of β. If J is too large, zones of rapid changes may

go undetected. Equation 3 should be account for spatial variation of the primary

variable. As such, a weighted second-phase sampling problem can be formulated as

a single-weighted objective (Cressie 1991) where the kriging variance is weighted by

Equation 4:

Maximize︸ ︷︷ ︸
{sm+1,...,sm+n}

Z[S] =
1

⌊G⌋

∑

gǫG

λ(sg) ·

∣∣∣∣
(
σold

k (sg)
)2

−
(
σnew

k (sg)
)2

∣∣∣∣ (5)

3 Application

In this paper, we use a sequential approach to strategically allocate new obser-

vations. To illustrate our methodology, we use primary data on soil concentration

of Chromium (Cr) in a study area near La Chaux de Fonds, in the Swiss Jura (see,

Goovaerts 1997 for the dataset). The Cr-concentration mg

kg
represents the quantity of

the heavy metal per kilogram of soil sampled.

Sequential addition assumes that one additional point has to be added to the initial

set n-times. Once the first point has been selected and added to the initial set M ,

n − 1 additional locations are to be chosen in a similar, sequential fashion. The se-

quential addition approach is illustrated using algorithms such as random strategy,

total enumeration, greedy, simulated annealing and simulated annealing with greedy

start. The greedy approach has the drawback of getting stuck at local optima, while

total enumeration is not time-efficient. Since simulated annealing has the inherent

property of jumping out of a local optimum, we capitalize on this technique for find-

ing the optimal solution S∗ to the sequential addition, using a cooling factor κ at the

end of a fixed number of iterations Tit. Similarly, the step size for determining new

neighbors (for swapping purposes) was reduced by a factor δ. A large initial step size

4
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δ of 3 kilometers -corresponding to approximately half the size of the study area D-

was chosen to permit wide jump swaps.

Figure 3 to the left illustrates the performance of the greedy algorithm and total enu-

meration in maximizing the change in weighted kriging variance with the addition

of new samples, against the changes obtained using naive addition. The total enu-

meration evaluates all possible solutions to the sequential addition, but may still be

suboptimal. To check on global optimality (14.879%), we ran a simultaneous simu-

lated annealing (see Van Groenigen and Stein 1998) and found that sequential results

were very close to the optimal. The sequential total enumeration yielded a 14.8%

improvement in the objective function. For the naive (random) addition, a total of

1500 simulations were performed, providing a good lower bound to evaluate other

heuristics. In the best-case scenario, a reduction of 7.52% was obtained, in compari-

son with a change of 4.89% in the worst case. Table 1 reports on the computational

time. When simulated annealing is used (Figure 3 to the right), the algorithm returns

near optimal solutions, even more so when the algorithm uses a lower cooling schedule

(κ closer to 1), and a greater number of iterations per temperature steps Tit.

Sequential heuristic Time (min) Reduction (%) Optimality gap (%)
Total enumeration 229.72 14.768 .75
Näıve 8.56 [2.869; 7.521] [80.72; 49.45]
Average näıve 8.56 4.892 67.12
Greedy 8.04 12.537 15.74
SA-Greedy(κ = .875, β = .9) 106.76 14.768 .75
SA-Greedy(κ = .35, β = .45) 33.35 14.649 .8
SA(κ = .95, δ = .965) 241.06 14.733 .98
SA(κ = .35, δ = .45) 33.82 14.420 3.08
SA(κ = .05, δ = .05) 26.50 13.95 6.24
Simultaneous heuristic SA 1500 14.879 0

Table 1: Average reduction (%), and optimality gap (%) for the sequential and simultaneous
addition after the addition of n = 30 points.

The combination of SA with a greedy start allows improvement upon a first very

good solution. Since the starting solution is relatively good, SA may experience

difficulties to improve upon that incumbent. Figure 4A shows the first 15 dynamic

moves, with SA parameters κ = .875, β = .9, yielding the sequential optimal in

106.76 minutes. The location exhibiting the highest weighted kriging variance (point

a = s+

m+1) is selected and serves as a starting point for SA, yet the latter is unable

to locate a better point, hence a = 1 = s+

m+1. That point is added to the set M

and the weighted kriging variance is re-computed accordingly. Location b = s+

m+2

is the point with the highest kriging variance and is selected as the starting point.

SA finds a better sample at location 2-symbolized by a white dot, and that point

5
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Figure 3: Percentage reduction in weighted kriging variance using a näıve approach versus total
enumeration. The sensitivity of the sequential SA coupled with greedy to the cooling factor κ is
illustrated in B. Notice for Tit = 60 how near-optimal solutions are obtained even if the temperature
drops quickly (κ = [.1; .25]).
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Figure 4: Illustration of the simulated annealing algorithm using a greedy start approach for the
first 15 points (A), in the best-case scenario (κ = .875, β = .9). Black dots denote initial points
obtained using greedy. The arrows point to the locations obtained using SA. Graph B illustrates
the reduction between successive steps using SA on greedy for n = 30 points.

is added to M. The weighted kriging variance is computed with the set M that

contains now two new samples, namely points 1 and 2. In the following 17 additions,

SA will ameliorate the incumbent greedy solution (see Figure 4B). Notice how often

SA discovers a better solution from the initial greedy sample, yet the magnitude of

that improvement decreases as new samples are being added.
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4 Conclusions:

In this paper, we have addressed the second-phase spatial sampling problem based

on two main criteria; the change in kriging variance, and the spatial variation of the

primary variable. Results of our numerical testing showed that total enumeration

outperformed all other heuristics in the sequential case, but at the cost of an extended

running time. The greedy approach, which locates new samples points where the

weighted kriging variance is the highest, returns near-optimal results in a short time-

frame. Simulated annealing is very sensitive to the choice of the cooling factor,

that governs the search procedure. The combination of simulated annealing with

a greedy start performed remarkably well considering the optimality gap and the

computational time.
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Abstract 

Studies related to the quality of life (QoL) and investigating it in human societies have been 
of great importance in recent days as an axis for government efficiency.  Such studies have 
always been tried to be increased in human residences by investigating factors affecting the 
improvement of quality of life both in objective (availability of material facilities), and 
subjective aspects (satisfaction).  

This research has used spatial analysis based on the results of a 20-percent count of 
statistics by the Iranian Statics Center in 2006 to investigate objective aspects of the 
objective aspects of QoL and metropolitan affect in urban areas that have contiguity with 
metropolitan in Iran. Furthermore, there was a great deal of spatial variation in QoL and 
deprivation index which is not explained by the global regression framework. 
Geographically Weighted Regression (GWR) analysis was undertaken using an adaptively 
defined kernel with a bi-square function. The kernel bandwidth was determined by 
minimisation of the Akaike Information Criterion (AIC) value. 

Indicators being used in this research include availability of facilities to families and their 
home quality. Results show a direct relationship between urban population size and city 
size rank and contiguity with metropolitan on the availability of facilities to families and 
their home quality.  

The GWR outputs showed that some areas with high QoL were also areas that have 
contiguity with metropolitan and high city growth rate. Therefore, the GWR results 
highlighted ‘hot spot’ areas .On the other hand; cities around metropolitan have better home 
quality (resistant settlements) and more available facilities to families than other cities. 

Keywords: Quality of Life, objective quality, subjective quality, Geographically 
Weighted Regression (GWR) 
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1. Introduction  
Since Mandelbrot (1967) published its basics, fractal geometry and fractal dimension 
(non-integer dimension) is well known as a valuable tool for describing the shape of 
objects. It gained large popularity in many fields of natural sciences (Batty and Longley 
1994, Goodchild 1980, Hastings and Sugihara 1994, Kitchin and Thrift 2009, Peitgen et 
al. 1992), including e.g. ecology, geography, GIScience, where the measures of object’s 
shape are essential. 

One of the major principles in fractal geometry is self-similarity and self-affinity. The 
most theoretical fractal objects, such as Barnsley’s fern, are self-similar (any part of the 
object is exactly similar to the whole) and self-affine (transformed self-similar objects). 
And typical fractal objects like leaves are very suitable to test our methods for possible 
use on geodata. And for geospatial fractal-based analysis, the various drainage systems 
were acquired and examined.         

For leaves, we show that discrimination based on only two fractal features has more 
than 90% accuracy. This notion is important, because it proves that automated 
classification can be based also on complexity of shapes and not only on their qualitative 
measurements. Fischer discriminant analysis is used to distinguish between families and 
species with satisfactory results. Leaf skeleton is very similar especially to river and road 
network and thus we examine different types of river drainage network and show that 
their complexity differs significantly.  

2. Methods  
There exist a number of methods for estimating fractal dimension and as e.g. Reynoso 
(2005) shows, results obtained by different methods often differ significantly. Also not 
only the method itself, but the software, which calculates the fractal dimension, may 
contribute to the differences (Reynoso 2005). All the calculations were accomplished in 
free software Fractalyse, easily downloadable from www.fractalyse.org. 
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2.1 Box-counting method  
The box-counting method was used for modified data – binary pictures. Box-counting 
dimension of a subset X of the plain is defined by counting number of unit boxes which 
intersects X: for any Δs > 0, let N(Δs) denote the minimum number of n-dimensional 
cubes of linear scale Δs (side length) needed to cover X. Than X has box dimension D if 
N(Δs) satisfies (according to Hastings and Sugihara 1994, Theiler 1990): 

DscsN )/1()( ∆≈∆ , (1) 

where Δs → 0, c is a constant and box-counting dimension of X is D. Formula (1) is 
called power law. Dimension D is then be computed by: 

[ ]ssND
s

∆∆−=
→∆

log/)(loglim
0 , (2) 

According to formula (2), calculation of box-counting dimension is simple. For a 
sequence of cell size Δs > 0, the number of cells N(Δs) needed to cover the set S is 
calculated. 

2.2 Linear Discriminant Analysis (LDA)  
Discriminant analysis is used in situations where the clusters are known a priori. The aim 
of discriminant analysis is to classify an observation, or several observations, into these 
known groups (Hardle and Simar, 2007). The classification rule is often a linear function 
of measurements that maximizes the separation between groups relative to their within-
group variability (Johnson and Wichern 2007). Discriminant scores are results of the 
LDA. 

3. Data processing  
Unique dataset of leaves was available thanks to Department of Botany of Faculty of 
Science in Olomouc. At first, possibilities of automated data classification were tested on 
dataset of leaves. A unique dataset containing 133 samples of leaves from 7 different 
species belonging to 3 families was available for scanning into raster digital format (fig. 1 
left).  Examined plants can be divided to two groups (tab. 1). 
 

First group 
(Angiosperms, Eudicots) 

Second group  
(Pteridophytes, Polypodiopsida) 

Roseaceae family: Dryopteridaceae family: Blechnaceae family: 
 
Alchemilla vulgaris (simple lobed 
leaves), Rubus wimmerianus 
(compound 5-foliolate leaves), 
Fragaria moschata (compound 
trifoliolate leaves) 

 
Polystichum aculeatum 
(compound 2-pinnate 
leaves), Dryopteris filix-
mas (compound 1-2 pinnate 
leaves), Dryopteris 
carthusiana (compound 2-
3-pinnate leaves) 

 
Blechnum spicant 
(simple pinnatifid 
sterile leaves and 
compound 1-pinnate 
fertile leaves) 

Table 1. Two main groups of examined plants (with particular species). 
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Scanned leaves were transformed into two datasets. First examined data-set was 
acquired by transforming raster pictures into binary raster picture in order to perform 
fractal analysis of leaf area (fig. 1 middle). Then the leaf skeleton was digitalized and 
extracted from the raster pictures for further fractal dimension analysis (fig. 1 right). 
 

 
 

Figure 1. Fern leaves and particular steps in their processing. 
 

Fractal dimensions of both, the leaf area and skeleton, were calculated. These 
computed fractal properties together with an affiliation to family (or species) served as 
basis attributes for linear discriminant analysis. R project was used as a computational 
environment where LDA was applied, visualized and compared. 

The LDA was applied using the relation group~area.FD+skeleton.FD as the basic 
formula. Two-dimensional space in which single points belonged to one of three families 
(or 7 species) was the result of the analysis. 

Predicted affiliations to single groups (based on both above mentioned methods) was 
visualized and compared with the real belonging to the group (fig. 2).  

 
River drainage network was obtained from free Internet source. Ten examples from 

each selected drainage system were selected and examined. Data are available from 
DIVA-GIS website (http://www.diva-gis.org/Data) and were used to select appropriate 
areas with typical drainage systems. Drainage system is governed by many factors, most 
importantly by topography, geology and preceding (and contemporary) geomorphologic 
processes (Zernitz 1932). There are several types of drainage system, each of them 
typical for a certain type of relief (Knighton 1998). 

 
Type of 

drainage system Description Example 

Dendritic Most common, river follows the slope, in V-shaped 
valleys 

Mississippi 

Parallel Steep, uniformly sloping relief Angola (Moxico, 
Cuando Cubango) 

Trellis Folded mountains with strike valleys Appalachian 
Mountains 

Rectangular Rocks with uniform resistance to erosion, but with 
two directions of jointing at approximately right 

Western Iran 
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angles 

Radial Typical for volcanoes, craters, radial depressions Kauai Island 

Deranged No coherent pattern of rivers and lakes,  Canadian Shield 

Table 2. Examined river drainage systems with descriptions and examples (according 
to Knighton 1998, Lambert 1998, Ritter 2006). 

4. Results  
In the case of LDA, the result of analysis is two-dimensional space, where points belong 
to the predicted groups (fig. 2). The success of the classification to the family was 93.2 % 
and 64.7 % in the classification to the species. Overview of classification into the families 
is in the table 3. 
 

 
Figure 2. Classification to families using LDA. 
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A B C  
LDA LDA LDA 

Sum 

A 62 0 2 64 
B 3 11 1 15 
C 3 0 51 54 

Table 3. Comparison of classification to particular families. 
 

Cluster analysis showed that species from the same family are more similar than 
species from different families (fig. 3) and shows unsupervised classification of species, 
which corresponds with actual taxonomical classification. 

 
Figure 3. Dissimilarity of different species based on the cluster analysis. 
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Then, for each selected area of different river drainage system, fractal dimension of 
river network was computed. Results are summarized in figure 4. 

 
Figure 4. Graphical overview of fractal dimension values of different drainage system 

types. 
 
Analysis of variance (ANOVA) was used to verify that mean fractal dimension for 

each drainage system differs. Bartlett's test, however, did not refuse the equality of 
variances. Since the only one characteristic of the drainage system was measured, data 
were not suitable for classification purposes. Despite of this fact, cluster analysis was 
conducted based on mean and standard deviation of values for each drainage network in 
order to examine the similarity of drainage systems. 

The most alike are parallel and rectangular drainage systems, which both embody 
quite similar patterns. Both of them (and also trellis drainage system) show regular 
patterns and their fractal dimension is the lowest. Radial and dendritic drainage systems 
embody more irregular shapes and therefore their fractal dimension is higher. The most 
irregular patterns are observed in deranged drainage system. Meanders, lakes and flood 
plane lobes are typical for deranged drainage systems and it is difficult to observe any 
distinguished structure in the shape of river network. The complexity of this type of 
drainage system is the greatest and analysis shows that the fractal dimension is also the 
highest. Cluster analysis shows that this type of drainage network is also the most 
dissimilar from any other drainage system types. 
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Figure 5. Dissimilarity of different drainage systems based on their fractal dimension. 

5. Conclusion  
We showed that just only two characteristics based on fractal dimension measurement 

(without any additional geometric features) are sufficient for accurate object 
classification. Although the analyses were applied to leaves, it is possible to use the 
methods for various geographical analyses based on geodatasets. 

Although leaves characteristics were used in this study, the perspectives of using 
analogical methods in GIScience are bidding themselves. 

We examined different types of drainage systems by means of their fractal dimension. 
Results show that mean fractal dimension for the six most common drainage systems 
differ significantly, and that the more regular drainage system, the lower fractal 
dimension (and vice versa). Complexity of fluvial network can point to different origin of 
the rivers and therefore this could be useful for geologist to semi-automatically evaluate 
the drainage systems. Also river complexity can be of vital importance in precipitation-
runoff evaluation of the water basin and could be correlated to different processes, e.g. 
during flood event. 

Further research concerning fractal measurements upon geospatial data is nowadays 
intensively conducted on Department of Geoinformatics, Palacky University in Olomouc, 
Czech Republic. 
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1. Introduction 
Cancer is the second most frequent cause of death in developed countries and the 

fourth in the Eastern Mediterranean Region (EMR). The estimated number of new 

incidents of cancer each year is expected to rise from 11 million in 2002 to 16 million 

by 2020, with more than half of these occurring in developing countries. In the EMR, 

cancer is forecast to rise by a factor of 1.8 times over the next 10 years (WHO, 2005). 

Saudi Arabia is located in the EMR where more than 45,500 cancer incidences have 

been registered between 1998 and 2004 (SCR, 2010). These incidences and a range of 

socio-economic variables have been compiled into a rich spatial-temporal database. 

GIS and spatial analysis provide opportunities for epidemiologists and cancer 

researchers to investigate spatial patterns within this dataset and to understand 

relationships between cancer and other health, socioeconomic and environmental 

variables (Brewer, 2006). To date, GIS has not been used extensively in Saudi Arabia 

for this purpose. Interpretation, assimilation and analysis of cancer incidence maps are 

valuable for identifying low, average and high concentrations of cancer incidence. This 

can be a preliminary step for research into the causes or aetiology of particular types of 
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cancers and for setting priorities for public health awareness campaigns, educational 

activities, improving methods of early detection, screening and cancer prevention and 

control. 

 

The aim of this paper is to describe a new interactive web-based tool aimed at both 

researchers and the public for analysing cancer data in Saudi Arabia. This statistical 

and spatial cancer atlas (SSCA) was designed and implemented using a client-server 

architecture. The atlas uses data from the Saudi Cancer Registry (SCR) at four spatial 

levels: national, regional, sub-regional and cities. The SSCA contains maps of the 

spatial distribution of cancer incidence over time and trends in the incidence of 

different types of cancers at the four spatial scales. It was designed for planning and 

resource allocation of health care resources and facilities and to highlight areas for 

further epidemiologic investigations into the causes of cancer. The architecture of the 

system and the main statistical and spatial features are described in the next section. 

This is followed by an example of the types of results that can be generated using the 

atlas. A brief discussion of further research areas is then provided.  

 

2. Design of the SSCA 

 
2.1 Architecture 

There are four main components that make up the architecture of the SSCA (fig. 1): 

 

 The Client: Flex was used to build the web client for the atlas, where MXML and 

ActionScript have been used to define the layout, appearance and behaviour of the 

application. These were then compiled into a single SWF file that makes up the 

Flex client SSCA application. The ArcGIS Server API for Flex was also used 

(ESRI, 2010), which allows maps and analysis from ArcGIS Server to be displayed 

in the client. 

 The Web and Application Server: responds to client requests, which can involve 

linking to other application servers, e.g. the database or map server. For the SSCA, 

ASP.NET was used to build the web application server since it is a powerful tool 

for creating dynamic and interactive web applications. The cancer database is 

maintained in a Microsoft SQL Server and the operating system is Windows 

Server, so the application server interfaces with these other components 

seamlessly.  
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3 

 

 The Map Server: fulfills spatial queries, conducts spatial analysis, and generates 

and delivers maps to the client based upon the users’ requests. The output from the 

map server can be a simple map image in a graphic format or map elements served 

by ArcGIS Server.  

 The Database Server: houses the cancer data in a relational database structure 

stored in Windows SQL Server 2008 (enterprise edition). The Flex client 

application accesses the database through SQL. For each individual cancer case, 14 

variables are recorded including: gender, age, birth date, marital status, region, 

city, diagnosis date, site, topography, morphology, behaviour and stage of 

diagnosis.    

 
Figure 1.  Architecture of the cancer atlas. 

 

A more detailed explanation of the architecture and the database structure is provided 

in Al-Ahmadi (2010).  

 

2.2 Statistical and Spatial Features of the Atlas 

The statistical and spatial functionality is embedded within two different Graphical 

User Interfaces (GUI). The statistical analysis interface is divided into different 

dynamically-linked panels as shown in fig. 2. The function of the Analysis panel is to 

allow users to select the spatial level, whether analysis is to be undertaken on all types 

of cancers or only the ten most common types, and the type of analysis. The type of 

analysis is standard or advanced where standard consists of 35 pre-defined analyses 
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that allow users to explore the distribution of cancer cases according to different 

criteria: age group, gender, stage distribution, morphology, time period, etc., as well as 

animations of population and cancer incidence pyramids over time. Advanced analysis 

allows the user the option to adjust the parameters of the 35 pre-defined analyses. 

More details of the types of analyses available are presented in Al-Ahmadi (2010). The 

spatial analysis interface as shown in fig. 3 is similar to the statistical analysis 

interface except that the results are displayed in map form. However, users can also 

display figures and tables through the legend panel. Different maps can be generated 

such as graduated choropleth maps, density maps, symbol maps, pie chart maps and 

bar chart maps dynamically.  

 

 
Figure 2: Statistical analysis interface panels for displaying the (1) analysis; (2) cancer 

type & time period; (3) figures; (4) tables; (5) legend. 

 

 

5 4 1 

2 

3 
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       Figure 3: Spatial analysis interface panels for displaying the (1) analysis; (2) 

cancer type & time period; (3) maps; (4) legend.  

 

 

3. Further Developments 

A web-based interactive Statistical Spatial Cancer Atlas has been developed for Saudi 

Arabia. The atlas will be used to determine whether observed geographic variation in 

the cancer incidence rates for the most common cancers such as breast, liver, thyroid, 

and colorectal cancers are random or statistically significant. Where there are 

statistically significant clusters, research questions of interest are whether these are 

temporary or time-persistent, whether they are specific to geographic areas, whether 

they are consistent across all diagnostic stages and whether they can be attributed to 

covariates such as age, sex, and urban/rural status. The atlas will be made available to 

researchers in the spring of 2011 and to the public in late 2011. Based on feedback 

from the researchers, the application will be improved and new advanced features will 

be added, e.g. space-time clustering, autocorrelation statistics, logistic regression, etc. 

 

A full demonstration of the Atlas and its capabilities will be given at the conference. 

 

 

 

4 

3 

1 

2 
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1. Introduction  
Natural disasters such as earthquakes and tsunamis occur all around the world but the 

exact timing of such events are difficult to predict. A commonality of all natural disasters 
is that they alter the physical landscape and can cause severe disruption to peoples daily 
lives. To aid humanitarian efforts in such instance one needs spatial data but, more often 
than not, in less developed counties spatial data is lacking. Even in cases where spatial 
data is available, it often lags behind what has changed on the ground. Over recent years 
there has been a growth of bottom-up campaigns to crowdsource (Howe 2006) spatial 
data, using volunteers to map entire counties which some term volunteered geographic 
information (VGI, Goodchild, 2007). Recently attention has focused on using the crowd 
to help map the infrastructure and devastation caused by natural disasters, such as in Haiti 
and Pakistan (e.g. Biewald and Janah 2010). 

While the use of GIS for emergency management is not new (see Cova 2005) 
applications often focus evacuation (e.g. Cova and Johnson 2003). Agent-based 
modellers have also attempted “agentize” such models (e.g. Thorp et al. 2006) thus 
adding more realistic behaviours but essentially such models are just evacuation models. 
There are few agent-based models that explore humanitarian assistance and those that do 
tend not to be overtly spatial (e.g. Salgado et al. 2010). There is a great potential for the 
use of agent-based modelling (ABM) and GIS to assist first responders and logistic 
support to understanding the complexities of people affected by such natural disasters 
(Fiedrich and Burghardt 2007). 

This paper explores a prototype spatially explicit agent-based model where people 
search for food after an earthquake. The model is created from crowdsourced geographic 
information, coupled with other sources of publically available data, and explores how 
aid might be distributed to relieve the suffering of the people affected. We focus on the 
devastating magnitude 7.0 earthquake that struck Haiti on the 12th of January 2010 which 
is estimated to have killed 230,000 people and left more than 1.6 million people homeless 
(BBC 2010). Fig. 1, provides an idea of the population distribution of Haiti, with the 
greatest density in and around Port-au-Prince. 
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Figure 1. The Republic of Haiti and its population distribution in 2009. 

2. Methodology  
To demonstrate how such data can be utilized, we have created a basic agent-based 
model programmed in Java utilizing the MASON simulation toolkit (Luke et al. 2005) 
and its GIS extension, GeoMASON (Sullivan et al. 2010). One of the novelties of this 
model is that it combines both raster and vector data structures into a single simulation. 
The simulation area measures 8km by 6km around Haiti’s capital, Port-au-Prince, as 
shown in Fig. 2.  
 

 
A B  

Figure 2. Data on the devastation focused on Port-au-Prince. A: original data, B: geo-
referenced image with roads shown which where used to locate the map. 

Raster data comes from several sources, Fig. 3, summarises the data used in the 
simulation. To initialize the agent population, we use population counts from the 2009 
LandScan (2011) dataset. The agents need are based on information about the devastation 
from G-Mosaic (2010). This data assesses damage at a number of different levels from 
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totally destroyed to intact structures. The assumption the model makes is that agents in 
the areas of greatest devastation have the greatest needs. The data was edited and geo-
referenced using vector road lines sourced from Geocommons (2010). The road layer is 
also used for defining paths via an A* algorithm from the agents homes to the aid points. 
The spatial resolution of the model is set at 100m2 however, multiple agents can be in one 
cell and agents can move a maximum of 100m per iteration (tick) of the model. 

 

 
Figure 3. Model inputs.  

2.1 Agent Decision Making Process  
Data alone tells us little to how the people in such areas will react to the devastation or 
the supply of food. For this, we turn to ABM. The people (agents) within the simulation 
have a goal to maximize their energy, in the sense that no agent wants to starve as shown 
in Fig. 4. At model initialization agents around the food distribution points know of its 
location, agents then inform other agents about the distribution point via a diffusion 
mechanism. Over time more and more agents become aware of their nearest, but also 
other distribution points, as information is spread throughout the system. Agents then 
evaluate if it is worthwhile for them to go and get food. They do this by planning the 
shortest path to the food via the road network. Within the simulation agents have a certain 
amount of energy depending on the level of destruction of where they are initialised, 
when their energy level reaches 0 they die.  

3. Simulation Results  
Fig. 5, shows some simulation results. Initially, at T=1, few agents know about the food 
distribution points. Over time, such as at T=200, more agents become aware of the 
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distribution points, as agents share information about the location of distribution points 
either by passing on the information to their neighbours (in the sense of a rumour model) 
or to agents they pass while moving towards the food source.  

Currently we are in the stages of calibrating and validating the agents behaviours, 
along with exploring the optimal placement of distribution points, which we will report at 
the conference. 

 

 
Figure 4. Agents decision making process.  

 

 
Figure 5. The spread of information and movement of agents over time.  

4. Summary 
This paper attempts to demonstrate how GIS and ABM can be utilized to explore 
humanitarian relief after an earthquake. Such a model harnesses crowdsourced and other 
publicly accessible data. The model moves away from the more traditional disaster 
models that explore evacuation scenarios associated with catastrophic events, to map the 
consequences of such an event on the native population. It demonstrates how data can be 
used to initialize agents, their needs and their environments and how through a simple 
decision making process, people learn about and search for food. We consider this an 
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important aspect for humanitarian relief as natural disasters are times of great uncertainty, 
and it is difficult to predict beforehand how people will react to such events.  By using 
agent-based models we can explicitly explore potential agent behaviour. Such a model, 
once thoroughly developed could act as a decision support tool for humanitarian relief.  
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1. Introduction  

Mathematical Morphology (MM) is a mature theory and technique originally developed 

for processing raster-based binary images. Over time MM was extended to include 

grayscale functions and images. Today, the generalization of MM to complete lattices is 

widely accepted as MM's theoretical foundation.  

 

Dilation and erosion are the basic operations of MM; dilation expands a figure 

uniformly, while erosion shrinks a figure uniformly. Expanding and shrinking can be 

altered in different directions by employing a non-circular structure element such as a 

diamond shape to constrain MM operations. A sequential combination of dilation and 

erosion operations can generate various outcomes from a unique figure. It is very useful 

in some cases to transform the shape of a figure or extract graphic information from 

figures. For example, a dilation operation plus an erosion operation may remove small 

holes and the same combination of operations also can determine if two figures are 

separate or detached.  Analogous combinations of operations are widely used in image 

processing.  

 

Such transformation and extraction of potential information from figures is also 

required in vector-based datasets and applications. MM, however, cannot be directly 

applied to vector data. Thus, vector data must be transformed into raster data before MM 

processing operations can be executed. After these operations, the vector to raster 
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transformation must be reversed if vector is the final data type required. Unfortunately, 

precision and information are lost during the two transformations. 

   

In the past, vector-based data processing was considered as computationally intensive. 

Therefore, raster data were used as an intermediate format to implement some complex 

algorithms. Nowadays, enhanced computing power supports efficient vector data 

processing capabilities. Now it is possible to implement the same figure transformation 

and information extraction from vector data as described above by developing vector-

based MM (VMM). Vector-based MM (VMM) is the focus of this paper. Vector-based 

dilation and erosion operations are defined so as to directly transform vector figures and 

extract potential information from vector data. The primary eexperiment proves that such 

definitions are of some interesting features and may potentially grow to a systematic 

methodology. 

 

2. Vector-based operations and structure elements  

2.1 Dilation and Erosion 

The two basic operations of VMM, dilation  and erosion , are defined as outward 

buffer and inward buffer of a vector figure. Figure 1 gives an example of dilation 

operation.  

 

 

 

Figure 1. An example of dilation operation (Shi and Wu, 2003) 

 

The buffer operation is now an ordinary operation in commercial GIS software. 

However, as a fundamental VMM operation, the basic algorithm must be more efficient; 

to implement some actions  constraints may be set for a buffer operation.  
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Due to the differences between raster and vector data sets, VMM displays some new 

dilation and erosion operation features. For example, in VMM, (As)s =A(ss) and 

(As) s=A (ss) holds true, even if s is a circle. In MM, errors may occur since the 

dilation and erosion operations are based on the pixel unit, and  not continuous in the 2D 

plane. 

 

2.2 Structure Element 

A structure element is an atomic figure used to generate various different shapes 

from a single figure. It is at the core of operations in raster-based MM. Likewise, for the 

vector-based operations defined above in section 2.1, outward and inward buffers can be 

considered as circle structure elements. We also can use non-circle structure elements. 

For example, a group of points can generate a buffer with an eclipse as a structure 

element to indicate the point-source pollution area. Figure 2 shows two examples of 

different results of a shape dilated with different structure elements. 

 

 

 

 

 

 

Figure 2. Examples of various dilations of a shape with various structure elements 
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3. Composite operations 

Through combinations of dilation and erosion operations, a series of composite 

operations can be generated. The two well-known operations are open and close. They 

are defined as: 

Open operation: SB=(SB) B 

Close operation: SB=(SB) B 

 

Some other interesting operations may be transplanted from MM to VMM, but 

special algorithms must be developed to realize them. For example,a skeleton operation  

generates the most simplified output shape from an input shape. The algorithm is quite 

intuitive in MM, but  is not developed in VMM. 

 

4. Application of generalization of polygonal map  

Based on the dilation and erosion operations of VMM, we designed different 

sequential combinations of the two operations to extract possible collision information 

within a single polygon and to simplify polygons. The method provides a feasible means 

for polygonal map generalization (e.g.a landuse map) to detect geometric conflicts and 

generalize polygons.  

 

4.1 To extract possible collision information  

The black polygon shown in Figure 3 is the original polygon selected from a 

polygonal map. We implemented inward-outward-buffering to detect collision possibly 

existing within the left polygon. The blue parts shown in diagram (figure 3) represent the 

outcome of an inward buffer and the red parts are the outcome of an outward buffer on 

the blue parts. The areas between the red parts cannot be identified visually on a small-

scale map. That is to say, collision may happen at these areas. The performance of the 

inward-outward-buffering operation is analogous to the open operation of the raster-

based MM. Therefore, we define the inward-outward-buffering operation is the vector-

based open operation. 
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Besides collision, there are some small areas between red boundaries and black 

boundary. Someof these areas are caused by small curves of the polygon boundary. Such 

details may not be necessary on a smaller-scale map and may interfere the understanding 

of the whole features. In addition to the small curves along the boundary, some small 

areas are elongating along a direction but they also may not be clearly visible on a 

smaller-scale map. These two cases are typical geometric conflicts occurring in polygonal 

maps during generalization. They are typically processed in different resolutions during 

map generalization in MM.  

 

 

 

Figure 3 Performance of different sequential combination of dilation and erosion 

operations  

 

4.2 To simply polygons 

In the right polygon (Figure 3), outward-inward-buffering is implemented on the 

right polygon. The red polygon is the outcome of the outward buffering; the blue inward 

buffer is generated from the red polygon. The blue polygon matches closely to the black 

polygon except the small elongated part in the middle and along the small curves in the 

black boundary. The whole shape of the blue polygon is smoother and simpler than the 

black polygon.  The performance of the outward-inward-buffering operation is analogous 

to the close operation of the raster-based MM. Therefore, we define the inward-outward-

buffering operation as the vector-based close operation. 
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It is well-known that the performance of raster-based dilation and erosion operations 

are strongly related to the size of structure element. Likewise, the performance of vector-

based operations is also impacted by the size of structure element, i.e. in this study, buffer 

width.  For the open operation, with decreasing buffer width, fewer collision areas will 

exist as shown in the left polygon (Figure 4). For a close operation, with increasing buffer 

witdh, more details along the polygon boundary will be removed (Figure 4). The leftmost 

polygon in Figure 4 is the original polygon, and Figures 4 (b)-(e) are the outcomes of the 

close operation with the buffer width, 0.1, 0.2, 0.3, and 0.4mm respectively. The red 

polygons are the final polygon after the close operation. From the left to the right, the red 

polygons become more and more generalized. It provides an efficient solution to derive 

polygonal maps on different map scales. 

 

(a)                    (b)                    (c)                    (d)                           (e) 

 

Figure 4. Performance of the close operations with different buffer widths 

 

5. Conclusions 

Through outward and inward buffers, a Vector-based Mathematical Morphology 

(VMM) can be constructed in a systematic way. VMM adds some additional features to 

those of traditional raster-based Mathematical Morphology. As illustrated by the 

examples given in this paper, VMM can be applied in map generalization. Many more 

examples are expected to result from future studies. The work in this paper is a starting 

point for a new framework for processing map data. 
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1. Introduction  
Geographically Weighted Methods are statistical techniques developed to model spatially 
varying (non-stationary) processes (Fotheringham et al. 2002). Their outputs are spatial 
datasets which are highly dimensional, complex and large. Interpreting these datasets is a 
significant challenge. One way to help with this is to use Geovisual Analytics methods. 

Geovisual Analytics is the sub-discipline of Visual Analytics that deals with data with 
a spatial and possibly temporal extent. Visual Analytics combines “automated analysis 
techniques with interactive visualisations for an effective understanding, reasoning and 
decision making on the basis of very large and complex datasets” (Keim et al. 2010). 

 This research aims to use Geovisual Analytics methods to transform the information 
contained in the output of a specific Geographically Weighed method: Geographically 
Weighted Discriminant Analysis (GWDA) into new knowledge about the underlying 
spatial process. This has been done before for other Geographically Weighted methods 
(Demšar et al. 2008a,b; 2010), but here we extend the principle to GWDA. This abstract 
describes progress to date and outlines a plan for the remainder of the research. 

1.1 Geographically Weighted Discriminant Analysis  
Discriminant Analysis is a supervised classification technique used to assign objects in a 
dataset to  distinct classes. Training data are used to estimate the class means, 
covariance matrices and prior probabilities in attribute space and this information is used 
to calibrate  classification functions of the attributes. Objects are assigned to the class 
with the maximum classification score. Linear Discriminant Analysis (LDA) outputs 
include;  classification functions that are linear combinations of the attributes, the 
assigned class and the posterior probabilities which represent the probability that an 
object belongs to a particular class.   

GWDA (Brunsdon et al. 2007) models spatial non-stationarity in the relationship 
between class membership and the attributes by allowing the parameters of the  
classification functions to vary spatially. GWDA outputs include;  spatially varying 
classification functions, the assigned class and the posterior probabilities. The GWDA 
classification functions require analysis to understand the causes of spatial non-
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stationarity but this is complex. Not only is there a cognitive difficulty comparing the 
values of multiple parameters for a single variable (Brunsdon et al. 2007) but in addition, 
the values of the classification functions are not absolute (Klecka 1980) which means that 
parameter values cannot be compared directly. 

2. Combining Linear Discriminant Analysis with Geovisual 
Analytics 
In this abstract we present the use of tools from the GeoViz Toolkit (Hardisty and 
Robinson 2010) to interpret the output of LDA and GWDA. Later, we will develop new 
visualizations specifically suited to exploring the output of GWDA. 

2.1 Implementation of Discriminant Analysis in the GeoViz Toolkit 
The GeoViz Toolkit is a free and open-source collection of visual and computational 
tools for exploring geographical datasets. These tools can be used in tandem so that 
multiple dynamically linked visualizations of the data are possible. Since one of the goals 
of Geovisual Analytics is to integrate visualization methods and spatial analysis 
techniques (Hardisty and Robinson 2010), we implemented LDA and GWDA in the 
GeoViz Toolkit as a first step.  

2.2 Data 
A data requirement for GWDA to work is that the classes are relatively evenly mixed 
spatially. In addition, the relationship between the classes and the attributes should vary 
spatially. We use a simulated dataset to ensure that both of these conditions are met. An 
advantage of this approach is that the non-stationary spatial patterns are already known so 
we are able to test the ability of different visualizations to detect them. 

We used an existing well-known non-spatial Iris dataset and spatialised it to meet the 
requirements for GWDA (fig. 1). This dataset was first used by Fisher (1936) and 
comprises 150 Iris plants of three different species: 50 Iris Setosa, 50 Iris Versicolor and 
50 Iris Virginica. Each plant has four associated measurements: sepal length, sepal width, 
petal length and petal width. To spatialise these data, we assigned the plants to cells on a 
rectangular grid with 10 rows and 15 columns using the following rules: 

1. To ensure an even spatial mix of species, we reserved a random selection of 50 
grid cells for each species. 

2. To incorporate spatial non-stationarity, plants of each species were assigned to the 
reserved set of grid cells in a manner that created local patterns. Plants with the 
shortest petal length were assigned to cells in the bottom left corner of the grid 
and plants with the longest petal length were assigned to cells in the upper right 
corner. The ordering is equivalent to the height of an oblique plane over the study 
area such that the height at the bottom left corner is minimized and the height at 
the upper right corner is maximized. 
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Figure 1. The spatialised Iris dataset showing Iris Setosa cells as red, Iris 
Versicolor cells as green and Iris Virginica cells as blue. 

2.3 Experiment: Visualising LDA Results 
Using our implementation of LDA, we classified the simulated spatial dataset using all 
four Iris measurements as predictor variables and used tools from the GeoViz Toolkit to 
visualise the output. 

The confusion matrix for the classification is shown in table 1. The classification 
accuracy is 98% and only 3 out of 150 plants were misclassified. 
 

Table 1. Confusion Matrix from an LDA classification of the spatialized Iris Dataset. 
 
The following tools were found to be useful in visualizing the output of LDA: 
 

1. GeoMapUni is a classified univariate choropleth map. It shows the spatial 
distribution of a single variable, in our case the 3 species of Iris (fig. 1). 
 

2. GeoMap is a classified bivariate choropleth map. It shows the spatial distribution 
of two variables with a bivariate colour scheme. We used a bivariate map with a 
complementary colour scheme (Eyton 1984) to visualize the spatial distribution of 
the misclassified plants (fig. 2). 
 

 Iris Setosa Iris Versicolor Iris Virginica Class Total 
Iris Setosa 50 0 0 50 
Iris Versicolor 0 48 2 50 
Iris Virginica 0 1 49 50 
LDA Total 50 49 51 150 
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Figure 2. Location of misclassified Iris plants. Dark red cells contain correctly classified 
plants. The two purple cells contain Iris Versicolor plants misclassified as Iris Virginica 
and the single green cell contains an Iris Virginica plant misclassified Iris Versicolor. 

 
3. ParallelPlot is a Parallel Coordinates Plot (PCP) to visualize a dataset in attribute 

space. We used a PCP to visualize the relationship between the three species of 
Iris and the predictor variables (fig. 3) and to visualize the relationship between 
the predictor variables, the posterior probabilities of the classification and the 
species of Iris for the 3 misclassified plants (fig. 4).  
 

 
Figure 3. Relationship of the 4 Iris measurements to the species of Iris. Iris Setosa plants 
are in red, Iris Versicolor plants are in green and Iris Virginica plants are in blue. 
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Figure 4. Highlights the relationship of the 3 misclassified plants to the 4 Iris 
measurements and the LDA posterior probabilities. Iris Setosa plants are in red, Iris 
Versicolor plants are in green and Iris Virginica plants are in blue. 

 
4. StarPlotMap. This tool shows the spatial distribution of more than two variables 

using Star Plot icons. We used a Star Plot map to visualize the spatial distribution 
of the LDA posterior probabilities (fig. 5). 

 

 
Figure 5. Spatial distribution of the posterior probabilities. The lengths of the rays are 
proportional to the posterior probabilities for each of the 3 species: rays pointing north for 
Iris Setosa, rays pointing south-east for Iris Versicolor and rays pointing south-west for 
Iris Virginica. 
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3. Next Step: Visualising the GWDA Results 
The next steps are to identify the most useful tools from the GeoViz Toolkit to visualize 
the output of GWDA and finally, to develop new visualizations specifically for 
exploration of the GWDA output. These should provide additional insight into the output 
of GWDA and facilitate the interpretation of GWDA results. As this is work in progress, 
in this section we present some preliminary results from the GWDA classification of the 
same dataset. 

Using our implementation of GWDA, we classified the simulated spatial dataset using 
all four Iris measurements as predictor variables. The confusion matrix for the 
classification is shown in Table 2. The classification accuracy is 100% and the variance 
in the GWDA posterior probabilities is reduced compared to the LDA posterior 
probabilities (fig. 6). The high classification accuracy for LDA and GWDA make it 
difficult to attribute the improved results to genuine spatial non-stationarity. Therefore 
these results should only be considered as preliminary and this experiment should be 
repeated for another, less ideal dataset. For example, since classification with GWDA 
performs so well, most of the posterior probability values are either 0 or 1 which accounts 
for considerable overprinting in the PCP (fig. 6). Therefore, this PCP should only be used 
in conjunction with other interactively connected visualisations to identify patterns. Note 
also the contrast between the variance of the posterior probability values in LDA (fig. 4) 
versus the almost binary separation in GWDA (fig. 6). 

 

Table 2. Confusion Matrix from a GWDA classification of the spatialized Iris Dataset. 
 

 
Figure 6. Relationship of species to the GWDA posterior probabilities. Iris Setosa plants 
are in red, Iris Versicolor plants are in blue and Iris Virginica plants are in green. This 
PCP shows all 150 plants, but as species are well separated by the posterior probabilities 
(i.e. they are either 0 or 1), there is a large amount of overprinting present in this PCP. 

 Iris Setosa Iris Versicolor Iris Virginica Class Total 
Iris Setosa 50 0 0 50 
Iris Versicolor 0 50 0 50 
Iris Virginica 0 0 50 50 
LDA Total 50 50 50 150 
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4. Conclusions  
We have demonstrated that specific tools from the GeoViz Toolkit are useful in revealing 
spatial and non-spatial patterns in the output of LDA. For the remainder of the research 
we plan to develop new visualisations to provide insight into GWDA. 

The tools for visualizing the output of LDA, described in section 2.3 can be used in 
exactly the same way with the GWDA output. However, the GWDA output presents 
additional challenges: 

1. We need a method to visualize the spatially varying relationship between class 
membership and the predictor variables and this will require a new technique. A 
starting point could be to map the variation in posterior probabilities for a fixed 
set of predictor variables (Brunsdon et al. 2007). This could be improved by 
allowing the user to vary the predictor variables on the fly. We plan to visualize 
the posterior probabilities using a Treemap approach (Johnson and Shneiderman 
1991). This should improve on the existing visualizations (StarPlot Map and PCP) 
which suffer from overprinting. We also plan to visualize the confusion matrix 
using a Mosaic Plot (Hartigan and Kleiner 1981).  

2. For this particular dataset, the difference between the classification accuracy for 
LDA and GWDA is small. For a less ideal dataset, mapping the difference 
between the LDA and GWDA posterior probabilities would highlight cells where 
the confidence in the classification has been enhanced or reduced. To decrease the 
predictive accuracy of the four Iris measurements we have “confused” the dataset 
by perturbing them slightly (fig. 7). The contrast between the LDA and GWDA 
classification accuracies (~87% and ~91% respectively) has now increased.  
 

 
Figure 7. Relationship of the 4 randomized Iris measurements to the species of Iris. Iris 
Setosa plants are in red, Iris Versicolor plants are in blue and Iris Virginica plants are in 
green. 

 
3. Identification of outliers in the classes is possible since the Mahalanobis Distance 

squared from each object to the class means follows a chi-squared distribution 
with m degrees of freedom where m is equal to the number of predictor variables 
(Manly 2005). We are investigating possible visualisations for outlier detection 
based on this. 
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1. Introduction  
A pressing problem in biodiversity studies is to find the optimal strategy for protecting the 
species given limited resources. In order to design such a strategy it is necessary to understand 
associations between spatial distribution of biodiversity and environmental factors. A 
relationship between a response variable (a suitable measure of biodiversity) and predictor 
variables (measures of environmental factors) is certain to be complex as it must reflect a non-
stationary character of an observed dependence. As a result one can expect an existence of 
several different biodiversity regimes – sets of environmental conditions locally associated with 
the levels of biodiversity measure. Multi-regime association cannot be discovered using standard 
methods based on linear regression; here we propose using decision tree learning methodology to 
discover different regimes of association between environmental variables and richness of bird 
species (a particular measure of biodiversity) across the contiguous United States.  
 
Fig.1 shows a map depicting spatial distribution of richness (R) of bird species across the US. 
Distribution of R has a strong bimodal character effectively dividing the United States into high 
richness (HR) and low richness (LR) regions using a threshold value of R=148; this value 
corresponds to a location of the minimum that clearly separates the two maxima of bimodal 
distribution of R. The HR region is not simple-connected; instead it consists of several 
geographically distributed pieces. The premise is that observed distribution of R associates with 
locally-specific combination of values of environmental variables. We find those associations 
using a data mining technique based on decision tree learning. This is an expansion of a method 
proposed by White and Sifneos (2002).  

 2. Methods  
We consider a set of 32 predictor variables pertaining to terrain, climate, landscape metrics, land 
cover, and environmental stress and hypothesized to have potential influence on bird richness. 
These variables constitute a subset of a larger dataset (White et al., 1999) and are given on a grid 
consisting of 12,337 hexagons covering the contiguous United States. A value of response 
variable R is the count of unique species in every hex. Breeding Bird Survey (BBS) grids (Sauer 
et al. 1995) representing distribution of individual bird species was used to calculate R; the 
values range from R=21 to R=230. 
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Figure 1. Map of richness, R, of bird species across the contiguous United States. 

 
Data mining technique of decision tree learning (Loh, 2008) uses a decision tree as a predictive 
model. The model recursively partitions a set of predictor variables until each partition, 
represented as a terminal node of the tree, contains only data instances (hexes in our dataset) 
from which a conclusion about the response variable can be made with relatively high accuracy.  
A unique feature of the tree model is its interpretability; other models often possess good 
prediction accuracy, but they act like black boxes and do not provide insight into the roles of the 
predictor variables. Our focus here is not on a predictive accuracy of such model (after all, the 
values of R are known for every hex) but rather on the data partitions that we connect with 
different biodiversity regimes. We build two conceptually different models. First, we build a 
regression tree model which is a piecewise constant estimate of a regression function. Data is 
partitioned so as to increase the accuracy of linear regression in each partition. In each terminal 
node an average value of R serves as a predictor. Nodes are labeled as HR if they contain 
predominantly high values of R and LR if they contain predominantly low values of R. Second, 
taking advantage of a bimodal character of the distribution of R, we start by labeling hexes into 
HR and LR using a threshold value of Rthres=148, and then build a classification tree. In 
classification tree data is partitioned so as to increase the label purity of subdivisions. Nodes are 
labeled as HR if they contain majority of HR hexes and LR if they contain majority of LR hexes. 
We used GUIDE algorithm (Loh, 2008) to build regression and classification trees having 12 
terminal nodes each. The number of terminal nodes is determined automatically by a process of 
cross validation. 

3. Results  
Results of the regression tree model (RTM) are shown on Fig.2. HR nodes and spatial regions 
corresponding to them are shown in warm colours while LR nodes and spatial regions 
corresponding to them are shown in cool colours. The overall accuracy of the RTM is ~80%. The 
major split of dataset is on the value of July mean temperature. Hexes with July temperatures <= 
21.8 C are conducive to HR; all but one node in the left main fork of the tree are HR nodes and 
there are no HR nodes in the right main fork of the tree. Surprisingly, despite a complex 
character of the dataset, great majority of “higher richness” hexes fulfil a single (JulyMeanTemp 
<= 21.82) predicate. Each HR node groups predominantly HR hexes and thus can be identified 
with a particular environmental regime conducive to high richness of species.  
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Figure 2. Map of richness of bird species environmental regimes calculated using regression tree. 
Tree nodes are shown as circles with ID numbers within them. Quantities on the left site of 
terminal nodes give the number of hexes in the node, quantities immediately below terminal 
nodes give an average value of R in the node, and the 0/1 labels indicate whether node represents 
HR regime or LR regime. 
 
Results of classification tree model (CTM) are shown on Fig.3. The overall accuracy of the CTM 
is ~85%. The major split of dataset is on the value of January mean temperature, but HR and LR 
nodes are split between the two main forks of the tree. The HR node #9 accounts for majority of 
HR hexes.  
 

4. Conclusions  
The two models represent different means of decision tree learning and yield seemingly different 
partitionings of the dataset. From a prediction point of view they are equally useful although the 
CTM has a small edge in accuracy. From a point of view of discovering environmental regimes 
of biodiversity, each model provides what, at first glance, appears to be a different partitioning of 
the environmental data. However, closer examination reveals some similarities in spatial extent 
between a number of nodes in the two partitions. For example, spatial footprint of node #28 in 
the CTM resembles the footprint of node #12 in the RTM. Other examples include: CTM node 
#17 and RTM node #20, eastern portion of CTM node #9 and RTM node #8.  These 
correspondences exist because a tree node is described in terms of a series of consecutive 
predicates, but a similar partition can be feasibly described by a different series of predicates if 
the predictor variables involved in the predicates are correlated.   

 
 

GeoComputation 2011

205

Session 4: Posters



 
 
Figure 3. Map of richness of bird species environmental regimes calculated using classification 

tree. See also caption to Fig. 2. 
 
Analysis of the two models reveals existence of four regimes of high richness of bird species that 
transcend specificity of the models. They are: (1) Southern regime (RTM node #12 and CTM 
node #28), (2) Northern regime (RTM  node #9  plus portions of node  #8 and RTM portion of 
node #9), (3) Mountain regime (RTM nodes #22, #21 and CTM nodes #32, portion of #9), (4) 
Pacific Coast regime (RTM portion of node #8 and CTM node #13). Fig.4 shows spatial extents 
of these regimes and their characterization in terms of predictors shown as parallel coordinates-
like graphs. These characterizations provide compact but comprehensive description of each 
regime. For example, the Southern regime is not only characterized by climatic variables, as 
indicated by predicates in both regression and classification trees, but also by presence (predictor 
17) and absence (predictors 18 and 19) of specific land cover classes. 
 
Decision tree-based methodology, as presented here, can be applied to a broad range of non-
stationary spatial problems where there is a need to identify different regimes of dependence 
between predictors and response. 
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Figure 4. (Top) Map of four regimes of high diversity of bird species in the United States. 
(Bo es, 
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Introduction 

Climate and human mobility are essentially interconnected and interdependent.   Our mobility through 
ground transportation system powered by fossil fuel is one of the primary forces behind the two major 
global crises of today’s society, namely energy scarcity and climate change.  On the other hand, long 
term change in climate and frequency of climate extreme events, such as hurricanes, floods, snow and 
ice storms can have both short term mobility challenges and cause long term human migrations as an 
adaptation phenomenon.  Human settlements develop around stable environments where shelter and 
sustenance are found, and on a higher level, economies can be built. Climate change is expected to shift 
these stable regions and consequently induce large scale migrations, which in turn can result in famine, 
cultural conflict, disease propagation, and stress on natural resources and critical infrastructures.   In the 
near term, to reduce oil dependence, environmental impacts, and congestion, a number of alternative 
energy supply, distribution, and end-use transportation systems, technologies and policies are presently 
being explored. However, it is still unclear when and in what precise combination these sources and 
technologies will emerge as successful and sustainable solutions. Ideally, future plausible development 
and implementation strategies for alternative energy resources and technologies will secure and 
support a societal system in which energy, environment, and mobility interests are simultaneously 
optimized.   In the longer term, under climate change scenarios it is plausible to expect displacement, 
migration, and resettlement as an interactive consequence of climate change and its impacts on water 
resources, land cover and land use.  Given the intertwined nature of such a system across wide 
geographic scales, assessing the effectiveness of possible planning strategies and discovering their 
unanticipated consequences require data collection, modeling, and simulation at the finest data, 
process, and societal response levels coupled with the system’s behavior over large spatial and temporal 
scales. 

Knowledge Discovery from High Resolution Data Driven Simulations 

The process of knowledge discovery often extends beyond common data mining techniques on volumes 
of disparate data to detect patterns, to a new level whereby high resolution data are coupled with 
modeling and simulations of physical systems to test hypotheses and discover “evolving or emerging” 
behaviors and trends.  In the latter case, such emerging behaviors often reflect unforeseen and 
undesired consequences of system design. For example, using a high-resolution climate model, 
researchers have showed that unique spatial pattern of land surface heterogeneity (due to clear cutting 
along roads) can trigger mesoscale circulations leading to more clouds and rain over the cleared patches 
[1]. Subsequent studies with satellite data have validated this hypothesis. Another interesting example 
that illustrates an energy policy-relevancy of similar modeling and simulation based research is the 
impact of large wind farms on local meteorology [2]. It was shown that turbulence generated in the 
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wake of the turbine rotors can significantly affect surface temperature and humidity. These effects can 
be minimized by reducing rotor-generated turbulence. Interestingly, low-turbulence rotors are also 
economically efficient because they can harness the energy that would have otherwise been lost to 
turbulence. These results have important implications for land use planning through siting, design and 
impact assessment of wind farms. 

Research Challenges and Opportunity 

For knowledge discovery, characterization of the interactions between the human dynamics and 
transportation infrastructure or climate change are essential and requires integration of three distinct 
components, namely, data, models and computation.  In transportation, previous research has 
attempted to develop simulations to address scenarios regarding the relationships among energy, 
emissions, air quality, and transportation. These include detailed physical models of transportation 
engineering, including CORSIM, TRANSIMS [7, 3], VISSIM [4], PARAMICS and OREMS [8]. Very recently, 
few models have started addressing the human dynamics of physical and social systems, such as SEAS 
[5] and Repast/Mason [9] and others [6].  However, none has been able to successfully integrate both 
the physical as well as behavioral aspects to characterize the interdependencies within the US 
transportation system and can address the interplay between energy, environment, and quality of life.   

For climate change impacts, many researchers have studied regional vulnerabilities.  Multiple 
vulnerability indexes have been developed that can be applied in climate change impact models include 
the Environmental Sustainability Index (ESI) created by the Yale Center for Environmental Law and Policy 
and CIESIN at Columbia, the Environmental Vulnerability Index (EVI) from the South Pacific Applied 
Geosciences Commission, and the Social Vulnerability Index (SoVI) from the Hazards & Vulnerability 
Research Institute at the University of South Carolina. Each of these indices has its own take on 
vulnerability, which is a large factor in how regional populations will be affected by changing climates. 
The impacts of climate change will vary by region, because not all populations are as vulnerable to 
changes [10]. A recent collaborative effort from the UN University Institute for Environment and Human 
Security, CARE International and the Center for International Earth Science Information Network 
(CIESIN) identified many potential threats of climate change and regional vulnerabilities to climate 
change; however, the report is very clear in concluding that the research does not attempt to 
characterize how many migrants will likely be displaced by climate change, or their probable 
destinations.  Climate induced migration is the result of many forces that exist in a complex space of 
social, psychological, cultural, physical, and economic systems. While there are many theories of what 
will drive future migrants and what this means to global stability, there are presently no highly detailed 
conceptual or computational models that focus on the problem. 

Both transportation and climate induced migration is the result of many forces that exist in a complex 
space of social, psychological, cultural, physical, and economic systems.  Progress has largely been 
limited by data and computational challenges necessary for accommodating the required high 
resolution along spatial, temporal and behavioral dimensions [11].  Integration of high resolution socio-
demographic data [12] and models bring much promise for capturing the social/behavioral dimension 
[13].  This dimension is essential in enabling us to characterize the interplay and interdependencies 
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between (transportation) technology and societal features or between climate change and human 
migration that are likely to: (i) have an impact on the success of future transportation or adaptation 
technologies and (ii) be overlooked by current approaches of modeling at aggregated scales.   

A High Performance Modeling and Simulation Framework to Implement Scenarios 

To represent the complex social phenomena, we have developed a modeling a simulation framework to 
utilize an Agent Based Modeling (ABM) platform as well as a discrete event modeling platform.  We 
employed both a micro and a meso scale simulation approaches with implementation of social units 
(e.g., individuals, households, firms, or nations) and their interactions, and observe the global structures 
that these interactions produce.   In this paper we describe our efforts in developing benchmark 
databases that enables a scalable modeling and simulating framework that can be utilized across the 
entire US.  We illustrate the capability by simulating a transportation scenario that allows an assessment 
of plausible market penetration Plug-in Hybrid Vehicle (PHEV) at a sub-County scale and its potential 
impact on the local electric grid and reducing the carbon footprint through displacement of gasoline.  
Specific insights derived from the results are highlighted to illustrate the complexity of the demographic 
dependency for the future success of novel transportation technologies.  We will also present results 
from our ongoing research to highlight the development of a conceptual model of climate induced 
migration.  Specifically, we will review the current state of the art in high resolution modeling and 
simulation for addressing this class of spatial analysis and the associated computational challenges.  
Ongoing effort to develop benchmark databases for such spatially explicit modeling and strategies to 
extend that to a computational modeling and simulation framework will also be discussed. 
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ABSTRACT: 
Increasingly people use digital or online networks to communicate and interact. This changes the socialscape of the urban area and 
with it the interactive hot spots change and fluctuate throughout the city as individuals follow the narrative path of their everyday 
routines. People leave messages, distribute news and respond to conversations not only in traditional locations anymore but 
potentially anywhere in the city.  
This paper discusses the emerging potential of social media data used for urban area research and city planning. Working with crowd 
sourced data in a web 2.0 manner as described for example by Hudson-Smith et All. (2009). Specifically we look at the connections 
between the emerging social network, as for example described by Boccaletti et All (2006), and the local physical surrounding and 
conditions. Also aspects of visualisation as well as privacy and ethical implications are discussed. 
The information gathered from social media networks, is gathered directly of the platform used by the network participants as for 
example already employed by Eagle et all (2009) in their study of social networks using mobile phones. The twitter data however, 
usually can be associated with a physical location for example via the GPS of the smart phone. Research using this location based 
technology together with a temporal structure has been demonstrated for example by Reads et All (2009). For this virtual social 
network and infrastructure-mapping project, the data is derived from the Twitter micro blogging service directly via the API and 
aims to merge the previously listed approaches into a combined location based temporal network.  
These local activity are analysed and visualised based on networks of interaction. Who knows whom and get in touch with whom? 
However the social networks in the sense of specific interest are these datasets in relation to place and how this location based 
network enable the individual to shape a distinct sense of place. 
 
 

1. INTRODUCTION 

Where is the city active and does it physically change over 
time? Urban areas are no static artefacts as they are preferably 
described in texts and theories. Urban areas are buzzing hot 
spots of human activity that, to some extend, manifest 
themselves as or utilise built structure, but are largely temporal 
and ephemeral. Meaning that no constant being of this 'artefact' 
is present, but merely a past aggregate is telling tales of 
memories and rumours.  
 
In an attempt to listen to these stories and narrative as they 
unfold through the streets, alleyways, in courts, buses, on roof 
terraces or in swimming pools the social networking platform 
twitter was employed to reconstruct the cities activity hotspot as 
a time-frozen 'New City Landscape' drawing out the ever 
changing locations of people's presence and power of spatial 
creation through narratives and activity.  
 
From the collected data a new landscape based on density is 
generated. The features of this landscape of digital activity 
correspond directly with the physical location of their origin but 
at the same time represent with hills the peaks of locations from 
where the activity tales are submitted. The flanks and valleys 
stand for areas with lesser activity and vast plains and deserts of 
no twitter tales stretch across the townscapes that lay dormant. 
These New City Landscape (See for example Figure 1) maps 
don't represent any physical features, but the interaction with 
physical features on a temporal basis. The digital realm has 
become as much part of the urban environment as the physical 
features and with these tweetography maps they are made 
visible for the first time. The maps allow us to make a direct 
comparison between real word activity, physical location and 
digital message. In a globalised world this local reference 

develops an increased importance as a sense of place, a source 
of identity and memory. The digital social media data allows us 
to investigate into this realm of peer groups' social location 
interaction, combining the global scale with its local source. 
 
Some of the physical features of the city that are shining 
through are the major infrastructure installations. The airports 
on one hand are the examples of quite intense activity and the 
parks on the other hand manifest themselves through the 
absence of activity, virtual social networking activity. Where as 
at airports users might be bored waiting or excited to just have 
landed, people in the park are engaged in physical activities 
other than tweeting and these locations are left virtually empty. 
A great example is the Central Park in New York, a virtual 
twitter activity desert, where around it and Manhattan as such is 
a very high tweet area.   
 

2. METHODS AND TECHNOLOGY 

The technology to collection twitter data is based on the 
technology developed for the Tweet-O-Meter (tom). This 
service was developed at CASA by Steven Gray. Similar to the 
tom service the data is collected using the twitter API. Twitter 
offers two different services through the API. One is the 
Streaming API and the other one is the Search API. For NCL 
we are using the Search API because of the built in spatial 
search function.  
 
2.1 Process 

With this spatial search we can filter the incoming messages as 
for a specific urban area. For the NCL maps we have defined 
the urban areas consistently as an areas with a 30km radius 
around an urban centre.  
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The search query will pass down from the twitter feed all 
messages to fit this criteria. The software will store all these 
results in a database continuously.  
 

 
Figure 1. - New York New City Landscape Map 
showing the twitter activities over the period of one 
week as a density surface within a radius of 30 km of 
the NY urban area. 
 
Due to IP limitations imposed by twitter and infrastructure 
limitations, we are only able to run four parallel search and 
collect queries at the time. Depending on the search location the 
resulting amount of data can be quite large, putting quite some 
pressure on the infrastructure. In order not to miss out on 
messages, the responding times of the system cannot be 
compromised.  
 
The data collection per location as been limited to one week, 
seven days, of consecutive logging of messages sent using the 
twitter service. One weeks provides good comparison data over 
a number of days but also shows the different patterns between 
weekdays and weekends as well as within 24 hours.  
 
The data collected as such therefore is already a spatially 
defined subset of the total number of tweets sent. However, the 
collected material needs to be reprocessed because the location 
information quality is not the same in all messages. Some 
messages are reverse geocoded from profile information, which 
generates generic place information.  
 
The resulting data set holds all messages containing real GPS 
information as Latitude and Longitude coordinates. With this 
information a more accurate mapping is possible. It is assumes 
that the accuracy of this information lies within the normal 
range of GPS accuracy of some 5 to 15 metre. 

In a second step a social network is computed, based on the 
interactions of users in the dataset. To do this especially re-
tweets (RT), twitter messages that have been resent by other 
users and at-tweets (@), messages specifically addressed at 
selected twitter users are employed to establish links between 
individual tweeters as well as a direction of interaction.  
 
Together with the emerging social network and the location as 
well as the temporal information contained in the data a location 
based temporal social network can be visualised.  
 
2.2 Data 

The amount of data collected varies dramatically between the 
different locations. There are clearly the very actively tweeting 
cities such as New York and London with more than 800'000 
location based messages sent over the course of one week. On 
the other hand there are a lot of places especially non-English 
speaking countries with far less activity, down to a few hundred. 
Additionally the total location based tweets and the actual GPS 
tagged messages diverge a lot. Furthermore there is not a 
simple, more messages result in more GPS tagged messages, 
equation that applies. It can well be that an very active place 
turns out very few Latitude/Longitude stamped tweets. As it 
appeared for example in the case of Sydney, Jakarta or Sao 
Paulo, where the percentage of geotweets is below 1 % of all 
location based messages.  
 
Twitter is a relatively new service, being around some four 
years. The number of users is continuously growing 
dramatically. This fact put some constraints on the 
comparability of the data samples. Also the short-term usage of 
the service is loosely connected to large media events and it is 
expected that numbers fluctuate quite a bit. 
 

3. RESULTS 

The point cloud of twitter messages drawn from the database 
and mapped using a Mercator projection. This universal 
projection allows for recognition and readability of urban areas 
located around the globe.  
For the mapping the individual point are being aggregated as a 
density surface. 
Throughout the emerging landscape features have been renamed 
to reflect these conditions. The new names are fabricated using 
the real world names in combination with a landscape 
description of the virtual surface overlaid. This could be 
'Mountain' or 'Peak' for high points, 'Slope' or 'Valley' for 
descending features or 'Desert' and 'Meadow' for average and 
consistent areas. Inactive areas are termed for example 'Quarry' 
or 'Ditch'. Together with the familiar real world element the 
locations become tangible and memorable points of orientation 
and maybe identification.  
 
The defining landscape features in the virtual NCL map are the 
hot spots of twitter activity, the peaks. Here the morphology 
varies between the urban Areas dramatically. How the twitter 
traffic structures the NCL is unique for each city. There are 
however some characteristics that can be pointed out.  
The different groups could be described as central, where one 
main location towers over the whole urban region, the multi, 
where different hotspots appear as peaks across the landscape 
and the featuring, where one or more features draw out as 
shapes, groups of peaks or ridges. 
 
Linking this to the social network, see Figure 2, the activity 
pattern in the temporal sense gain of importance. The variety of 
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different pattern displayed by different groups is very distinct 
from activity pattern we normally see in everyday activities. 
There is more scope for the individual to jump in and out of 
activities, but connections on hold and reactivate others than 
what we know from real world interaction.  
 

 
Figure 2 - Twitter activity based social network using 
the London NCL map data collected in a radius of 30 
km within the London urban area. 

On the city side the transformation of network activity hubs 
through out different time periods are striking and offer a new 
perspective on urban area usage as well as sense of place.  
Application for this can be found many ranging from urban 
planning to transport management and modelling to health and 
safety as in the spatial spreading of information or infections.  
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1. Introduction
Various methods for modelling space-time data have been proposed over the years,
including multivariate autoregressive integrated moving average (ARIMA) models and
its extension space time autoregressive integrated moving average (STARIMA) models
(Pfeiffer and Deutsch, 1980). In these time series models, autocorrelation is accounted for
in the autoregressive and moving average terms. Parameter estimates are fixed globally
both spatially and temporally. The models assume that the correlation in data can be
adequately described by such globally set parameters, but this may not be the case if the
correlation between data is dynamic, which it is likely to be on road transport networks
(Cheng et al, 2011). For instance, traffic theories say that the current conditions on a
section of road are influenced to some extent by the previous conditions of adjacent road
sections along both upstream and downstream directions (see for example, Lighthill and
Whitham, 1955; Richards, 1956). In congested conditions, the influence will come
mainly from downstream whereas in free flowing conditions the influence will come
from upstream. On a road network comprising hundreds or thousands of links, such
spatio-temporal autocorrelation structure is dynamic (in time) and heterogeneous (in
space). Yue and Yeh (2008) show the correlation between locations on a road network
determines the forecast ability of a space-time model. This fact has been recognised in
previous studies that achieve improved results by incorporating a dynamic structure in
their weighting systems (Min et al, 2009; 2010; Min and Wynter, 2011). The aim of this
study is to model dynamic autocorrelations of road transport network data By modifying
tradition model to a generic dynamic model which capture the autocorrelation locally
(heterogeneity) and dynamically (dynamic state of the network) over the traditional time
series models. The proposed model is tested with traffic data collected from Central
London. The result shows that the performance of estimation and prediction is improved
on average through the proposed modifications.

2. A Localised Dynamic Space-Time Model - NSTARIMA
STARIMA model considers the observation at location i during time interval t to be a
weighted linear combination of observations in its spatial neighbours at previous time
intervals. Consider that a road network, in which measurements (e.g. speeds, journey
times, etc) are collected on N links over a time period T. Let )(tz be an N-dimensional
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column vector containing the observations )(tzi on each link i, where i = 1,2,…,N,

during each time interval t, where t = 1,2,…,T. STARIMA model states that
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in which )(ˆ tz is a N-dimensional column vector of predictions on all links i at time t. The

first term in the equation is the autoregressive (AR) component, while the second term is
the moving average (MA). The term, )(ε , is a N-dimensional column vector of residual

on each link. The spatial lag (h) represents the spatial distance between two locations.
The spatial orders associated with each kth or lth temporally lagged term in AR and MA

components are respectively km and ln . The spatial order specifies the spatial extent

that could have an effect on the link of interest i within the temporal lags of k and l. The

notation kh and lh are the model parameters to be calibrated. The matrix )(hW is an N

x N spatial weight matrix for spatial lag h. This spatial weight matrix )(hW contains the
set of weights ijw specifying the degree of spatial correlation between links i and j (see

Kamarianakis and Prastacos, 2005; Getis, 2009).
We identify several deficiencies of the above STARIMA model for traffic modelling

and propose a new dynamic time series model – which we call NSTARIMA - that
includes several new features. Details are discussed below.

2.1 Spatial orders

Traditional STARIMA model considers the spatial orders to be fixed and preset for the
associated temporal lag. It may not be appropriate for traffic modelling as the spatial
influences vary under different traffic conditions due to different speeds encountered
(Min et al., 2008). This study relaxes such assumption and considers the spatial orders to
be dynamic and dependent on traffic state. Given the model updating time interval ( t ),

the spatial order )(tmk at time t associated with temporal lag k is determined as
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where )( 0iL is the length of the intermediate link 0i between the link of interest i and

the spatial extent m. Essentially, )(tmk returns the number of links that traffic can

proceed toward the point of interest i in a time period of tk .

2.2 Spatial weight matrix

The spatial weight matrix ( )(hW ) is usually regarded as the physical distances between
the corresponding locations. In road traffic setting, the correlation of traffic at two
locations does not only depend on the spatial distance, but also on the traffic conditions.
We propose a novel spatial weight matrix which takes the traffic states into account. For
a link pair (i, j), the corresponding element in the spatial weight matrix is defined as
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where )(tvi and )(tv j are the respective average speeds on links i and j during time

interval t; ijD is the distance between i and j. The speed )(tvi is defined to be zero if no

data is observed on the link during time t. The spatial weight matrix derived using (4) is
time-varying and traffic state dependent.

2.3 Model formulation

We formulate our new time series model – NSTARIMA - as
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Original STARIMA model is specified by a single global set of parameters ( kh , kh )

for the entire network. In this new model, the model parameters are N x N diagonal

matrices ( khφ and klθ ):

      ),...,,( 21 Nkhkhkhkh φφφdiagφ and       ),...,,( 21 Nlhlhlhlh θθθdiagθ , (5)

where  ikhφ and  ilhθ are the parameters for each link i. It is noted that the

NSTARIMA model covers the STARIMA and ARIMA models as special cases.

3. Case Study
The test network, which comprises 22 links in Central London, is selected for this study
as shown in Figure 1 with arrows showing the directions of traffic. It has variable link
lengths, ranging from 473.4m to 3.85km with an average length of 1.4km. Journey times
of vehicles across the network are measured by Automatic Number Plate Recognition
(ANPR) system which is operated by Transport for London (TfL). The raw journey time
data are aggregated into 5-minute averages.

After discussing with TfL, data from 16 Feb 2009 to 30 Mar 2009 (43 days in total)
are selected for the case study. The dataset is divided into two sets. The first 36 days are
used for calibration which determines the temporal orders (p, q) and the model

parameters ( khφ and klθ ). The remaining 7 days are used for validation which compares

the predictions made by the calibrated model and the actual observations.

The experiment consists of three stages: identification, calibration, and validation.

 Identification refers to the determination of temporal orders – autoregressive (p)
and moving average (q) – in the time series model.

 Given the temporal orders, the model parameters are the determined in the
calibration step by using a least square error approach. This study compares three
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different time series models: ARIMA, original STARIMA and modified
STARIMA.

 Finally, in validation, predictions made by the calibrated models are compared
with the actual observations.

Figure 1 London test network (Cheng et al., 2011)

Figures 2 and 3 respectively show the R-square and root mean square error (RMSE)
of the 22 links, which are arranged in ascending order of lengths. Results show that there
is no single model dominates the others. However, if we summarise average R-square
and RMSE of all links, it shows that NSTARIMA outperforms traditional STARIMA and
ARIMA model.

Figure 4 shows the predictions from 12:00 to 16:00 on 30 Mar. Overall, original
STARIMA has the worst average prediction results as the heterogeneity and dynamics of
the urban road network cannot be well captured (Cheng et al, 2011). However, the
NSTARIMA outperforms the other models on average.

4. Conclusions
This paper proposes a new space-time series model – NSTARIMA - for road traffic
modelling. The proposed model is tested with journey time data obtained from the
Automatic Number Plate Recognition (ANPR) system in Central London. Results show
the average prediction accuracy of the NSTARIMA is better than traditional STARIMA
and ARIMA model. This indicates that the new NSTARIMA can capture heterogeneity
and dynamics of road traffic by modifying the original STARIMA as proposed. Given
travel time is an important index for measuring transport system performance, the work
reported here will contribute to the literature of traffic analysis and management.
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Figure 4. Prediction plots of three links 2052 (a), 1623 (b), and 1593 (c) at 12:00 - 16:00
on 30 Mar using three different models NSTARIMA, STARIMA, and ARIMA
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1616 2007 524 474 2324 1447 463 2055 448 425 1025 1593 2052 1419 432 2079 1592 1384 2085 1623 2301 2140

473m 608m 612m 627m 660m 723m 844m 881m 882m 926m 1087m 1176m 1297m 1335m 1427m 1492m 1644m 1777m 2111m 2580m 3698m 3855m average

Modified STARIMA 0.1332 0.1886 0.1804 0.1119 0.3982 0.4708 0.4792 0.3635 0.1577 0.0506 0.4082 0.6501 0.3642 0.5703 0.2059 0.1532 0.3113 0.4802 0.0386 0.6701 0.4006 0.7182 0.3411

STARIMA 0.1449 0.1349 0.1191 0.1339 0.2001 0.2146 0.2634 0.1262 0.0785 0.1842 0.3277 0.3832 0.3411 0.5054 0.2257 0.1044 0.2449 0.6248 0.0997 0.6361 0.2867 0.7645 0.2793

ARIMA 0.0812 0.1029 0.1518 0.1429 0.6175 0.5187 0.4829 0.3635 0.1574 0.2526 0.3945 0.6495 0.1179 0.3172 0.3809 0.2542 0.2975 0.7298 0.0610 0.3668 0.2205 0.8003 0.3392
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Figure 2. R-square comparison of three different models

1616 2007 524 474 2324 1447 463 2055 448 425 1025 1593 2052 1419 432 2079 1592 1384 2085 1623 2301 2140

473m 608m 612m 627m 660m 723m 844m 881m 882m 926m 1087m 1176m 1297m 1335m 1427m 1492m 1644m 1777m 2111m 2580m 3698m 3855m average

Modified STARIMA 319 87 208 634 122 99 62 49 43 483 94 133 140 171 148 157 148 165 314 211 251 126 189

STARIMA 264 100 285 524 237 257 123 154 113 212 145 322 167 216 131 338 248 98 162 221 362 98 217
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0

100

200

300

400

500

600

700

800

R
M

S
E

RMSE
Modified STARIMA STARIMA ARIMA

Length of link

Link id

Figure 3. RMSE comparison of three different models
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1. Introduction 
There exists a numerical analysis of a road network from various viewpoints: the 
morphological proximity of road networks to typical geometric graphs (Tanimura and 
Furuyama 2002, Watanabe 2005), the efficiency of travel in a road network (Koshizuka 
and Kobayashi 1983), the street hierarchies from the multiple perspectives of topology 
and geometry (Jiang 2009) and so on. In the present study, we employ geometric graphs 
based on β-skeleton, which change in response to variations in parameter values, and 
attempt to analyze road networks by considering the morphological proximity 
(topological perspective) and the efficiency of travel (geometric perspective). 

2. Road Network Analysis from Topological Perspective 

2.1 Concept of β-skeleton  
Given a spatial distribution of points pi (i = 1, 2, …, n) in two-dimensional space, let us 
consider various ways of creating geometric graphs that connect the points to each other. 
As shown in fig. 1, let us assume that two circular arcs pass through the arbitrary points 
p1 and p2. The size of the closed region E enclosed by the arcs (the crosshatched portions 
in fig. 1) varies with the parameter β (≥ 0), such that the area of E increases as β increases. 
Then, if some third point is included within E, then the segment with endpoints p1 and p2 
is not an edge in the graph, whereas if no such third point is included, the graph contains 
this segment as an edge. 

A geometric graph created according to this rule is called the β-skeleton (Wang et al. 
2003, Bose et al. 2009). It is well established that the case β = 0 corresponds to the 
Delaunay triangulation of the set of points, β = 1 corresponds to the Gabriel graph, and β 
= 2 corresponds to the relative neighbourhood graph. 
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Figure 1. Definition of β-skeleton. 
 

2.2 Definition of agreement rate 
Let us define an “agreement rate” as an index expressing how closely the morphology of 
an actual road network resembles that of a geometric graph. The set of edges making up 
the road network is denoted by R and that of the geometric graph is denoted by G. The 
number of elements in the set of edges is written as the function n( ). Then, we define the 
agreement rate (C-ratio) as the number of elements in R⋂G divided by the number of 
elements in R⋃G, that is, n(R⋂G)/n(R⋃G). 

2.3 Maximum agreement rate and value of β 
The greater Tokyo metropolitan region was chosen for the study area, and subdivided 
into eight sub-regions shown in fig. 2. 

Geometric graphs were created for various values of β, and the resulting agreement 
ratios with respect to the actual road network were calculated (fig. 3). The value of β 
yielding the maximum agreement rate is labelled β1. Table 1 shows the maximum 
agreement rate and the corresponding β1. As shown, the values of β1 for the sub-regions 
lie between 1.0 and 1.5. 
 

 
 

Figure 2. Study area. 
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Figure 3. Agreement rate as function of β (sub-region 4). 
 

Sub-region Maximum 
agreement rate 

β1 

1 0.610 1.40 
2 0.643 1.45 
3 0.639 1.15 
4 0.693 1.40 
5 0.623 1.20 
6 0.614 1.20 
7 0.637 1.30 
8 0.656 1.25 

 
Table 1. Maximum agreement rate and the corresponding value of β1. 

 

3. Road Network Analysis from Geometric Perspective 

3.1 Concept of spanning ratio 
The spanning ratio (SR) has been suggested as an index expressing the travel efficiency 
through a network (Wang et al., 2003). SR is defined as the value of the distance L 
between two points on the network paths divided by the Euclidian distance D between the 
points. In other words, the greater the values SR, the lower the travel efficiency in the 
network.  

3.2 Spanning ratio of road network and geometric graph 
The intersection points in the road networks R in the previous section were used to create 
Geometric graphs for various values of β (1.0 ≤ β ≤ 2.0). Next, two intersections at a time 
were extracted at random and the value of SR was calculated for that pair. The mean m 
and standard deviation σ were calculated for the SR of 1,000 point pairs for each graph. 
The results showed that m is an increasing linear function of β (m = aβ + b; a and b are 
unknown parameters). The increase in m is due to Geometric graphs with higher values 
of β having lower numbers of edges, decreasing the efficiency of spatial motion in the 
graphs. 
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Also, the results showed that the value of σ grows with the value of β. The growth of σ 
indicates that there is high variation in the travel efficiency between point pairs, that is, 
that there is a large difference between the Euclidian distance and the distance in the 
network between point pairs. Therefore, it is preferable to conduct analysis of spatial 
motion in regions with low road densities on the basis of distance in the network rather 
than on the basis of Euclidian distance. 

The mean m of SR for 1,000 point pairs was calculated for the actual road network of 
each sub-region. The values of β (β2) were then inversely estimated using m by the 
equations (β2 = (m – b)/a). Specifically, the values of β for the geometric graph indicating 
the mean values of SR equivalent to that of the actual road network were calculated. 
These values are shown in table 2 along with the corresponding values for parameters of 
regression equations. As shown, in all the sub-regions analyzed here, β2 remains within 
the range 1.0 to 1.5, the same as β1. 
 

Sub-region m a b R2 β2 
1 1.224 0.217 0.913 0.993 1.440 
2 1.196 0.184 0.934 0.993 1.432 
3 1.155 0.184 0.946 0.981 1.146 
4 1.166 0.145 0.968 0.993 1.363 
5 1.184 0.213 0.906 0.998 1.310 
6 1.194 0.238 0.874 0.994 1.350 
7 1.178 0.202 0.914 0.989 1.310 
8 1.210 0.207 0.918 0.995 1.374 

 
Table 2. Value of β2 for the geometric graph whose travel efficiency is equivalent to that 

of road network. 
 

3.3 Relation between β1 and β2 
Figure 4 shows relationships between the β1 (value of β for morphological proximity) and 
the β2 (value of β for similar travel efficiencies). In sub-regions 1, 5, and 6, suburban 
areas with low densities of roads, β1 < β2 holds. In these areas, there is a risk that using 
Geometric graphs (the geometric graph for β1), which have been created on the basis of 
morphological proximity, will provide erroneous predictions of travel efficiency. 
Specifically, the travel efficiency in the actual road network is likely to be lower than that 
in the geometric graph created on the basis of morphological proximity. On the other 
hand, β1 and β2 are roughly similar in sub-regions 2, 3, 4, and 7, the downtown Tokyo 
area, where the density of roads is high. 
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Figure 4.  β1 versus β2 (numerals are sub-region numbers). 
 

4. Summary and Conclusions 
We carried out an analysis of a road network from each of two viewpoints, network 
morphology and travel efficiency, by using the concept of β-skeletons. The following 
findings were identified: 

(1) The value of β in a geometric graph with a maximal morphological proximity to an 
actual road network is in the range 1.0 to 1.5 for the networks examined here. 

(2) The agreement rate between a road network and a geometric graph is less in 
mountainous suburban areas or similar areas with low densities of roads. 

(3) The travel efficiency (SR) between two points shows more variation in suburban 
areas with low densities of roads; therefore, when investigating the travel efficiency 
between locations, the analysis must employ the distance in the network rather than the 
Euclidian distance between the points. 

(4) The value of β when there is high morphological proximity between a road 
network and a geometric graph (β1) was nearly equal to the value of β when there is a 
strong similarity between the travel efficiencies in the actual network and the graph (β2) 
in the central part of Tokyo. However, β1 < β2 in the Tokyo suburbs, indicating that an 
analyst must take account of the higher travel efficiency in the geometric graph mostly 
strongly resembling the actual road network than that in the actual road network itself. 

In this paper, we compared the properties of geometric graphs to real road networks. 
This approach can be extended for the general modelling of various numerical 
simulations, as well as theoretical analysis on intersections which are randomly 
distributed following the Poisson distribution. 

5. References  
Tanimura T, Furuyama M, 2002, A Study on The Rational Network Morphology Embepped in English 

Historic Town, Journal of architecture, planning and environmental engineering, Transactions of 
AIJ, 563:179-186. 

Watanabe D, 2005, A Study on Analysing the Road Network Pattern using Proximity Graphs, Journal of 
the City Planning Institute of Japan 40:133-138. 

Jiang B, 2009, Street hierarchies: a minority of streets account for a majority of traffic flow, International 
Journal of Geographical Information Science, 23.8: 1033-1048. 

Koshizuka T, Kobayashi J, 1983, On the Relation between Road Distance and Euclidean Distance, City 
planning review, 18:43-48. 

1.1

1.2

1.3

1.4

1.5

1.1 1.2 1.3 1.4 1.5

8
6

5

7

3

2
1

4

β1

β 2

GeoComputation 2011

225

Session 5A: Network Complexity



Bose P, Cardinal J, Collette S, Demaine ED, Palop B, Taslakian P, Zeh N, 2009, Relaxed Gabriel Graphs, 
CCCG (Vancouver):169-172. 

Wang W, Li XY, Moaveninejad K, Wang Y, Song WZ, 2003, The Spanning Ratio of β-skeletons, CCCG 
(Halifax):35-38. 

 

GeoComputation 2011

226

Session 5A: Network Complexity



1 
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Scaling of geographic space refers to the fact that for a large geographic area its small constituents or units 
are much more common than the large ones. This paper develops a novel perspective to the scaling of 
geographic space using large street networks involving both cities and countryside. This paper is motivated 
by the belief that geographic space essentially exhibits a heavy tailed distribution rather than a normal 
distribution. We attempt to investigate the scaling of geographic space from the perspective of city and 
field blocks. This paper is further motivated by another intriguing issue, i.e., how to delineate city 
boundaries. Delineating city boundaries objectively is essential for many urban studies and urban 
administrations. Researchers and practitioners alike usually rely on the boundaries provided by census or 
statistical bureaus. These imposed boundaries are considered to be subjective or even arbitrary. 
 
Three largest European countries France, Germany and UK were adopted in our study. Given a street 
network of an entire country, we decompose the street network into individual blocks, each of which forms 
a minimum ring or cycle such as city blocks and field blocks. We adopt the street networks of three largest 
European countries for the computation and experiments. Before the extraction of individual blocks for 
scaling analysis, we need to build up topological relationships, which lead to an arc-based graphs or 
networks.  
 
We compute the arc-based networks to extract individual blocks in order to investigate some scaling 
properties. To introduce the computation, we adopt a fictive street network shown in Figure 1, which 
includes forty blocks and several dangling arcs that do not constitute any part of the blocks. To extract the 
individual blocks, we first need to set a minimum bounding box for the network in order to select an 
outmost arc to start traversal processes. There are two kinds of traversal processes: left traversal process 
and right traversal process. The left traversal process means that when comes to a node with two or more 
arcs, it always chooses the most left arc. On the other hand, it always chooses the most right arc for the 
right traversal process. Once the traversal process (starting from the outmost arc) is over, it ends up with 
one cycle: either a minimum cycle (which is a block) or a maximum cycle which is the outmost border. If 
the maximum cycle is not generated, then the program chooses a reverse direction for the traversal process 
until the maximum cycle is detected, and the corresponding arcs are marked with the traversal direction 
(left or right).  
 

 
 

Figure 1: Illustration of the minimum cycles (or blocks) and the maximum cycle 
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The next step is to choose an arc on the border, and begin the traversal process along the opposite direction 
as previously marked, until all arcs on the border are processed. This way all the blocks on the border are 
detected and are assigned to border number 1. This process goes recursively for the blocks that are adjacent 
to the blocks with border number 1. We will get all the blocks with border number 2. The above process 
continues until all the blocks are exhausted and are assigned to an appropriate border number; refer to 
Appendix and Figure A1 for details on the algorithmic procedures. As a note on computation, it takes many 
hours for the server-like machine to have the process done: France and UK each about 5 hours, and 
Germany 63 hours. Eventually those dangling arcs are dropped out in the process of extracting the blocks. 
The border number is a de facto topological distance of a block far from the outmost border (Note: the 
border is not necessarily a country border). Every block has a border number, showing how far it is from 
the outmost border. The higher the border number, the farther the block is from the border, or reversely the 
lower the border number, the closer the block is to the border.  
 
The block sizes demonstrate the scaling property, i.e., far more small blocks than large ones. Interestingly, 
we find that the mean of all the block sizes can easily separate between small and large blocks- a high 
percentage (e.g., 90%) of smaller ones and a low percentage (e.g., 10%) of larger ones. Statistically, the 
block sizes demonstrate one of the heavy tailed distributions, lognormal distribution (Figure 2). This 
regularity is termed as the head/tail division rule, i.e., given a variable X, if its values x follow a heavy 
tailed distribution, then the mean (m) of the values can divide all the values into two parts: a high 
percentage in the tail, and a low percentage in the head. 
 

 
 

Figure 2: (Color online) Lognormal distribution of the block sizes for the three street networks 
 
Because all blocks in one country exhibit a heavy tailed distribution (i.e., lognormal distribution), we can 
use the mean to divide all the blocks into smaller ones (smaller than the mean) and larger ones (larger than 
the mean). We then cluster the smaller blocks into individual groups. This clustering process goes like this. 
Starting from any smaller block whose neighboring blocks are also smaller ones, we design a program to 
traverse its adjacent blocks, and cluster those smaller blocks whose adjacent blocks are also smaller ones. 
This processing continues recursively until all the smaller ones are exhausted. We find that the sizes of the 
clustered groups demonstrate a heavy tailed distribution. Because of this, we then rely on the head/tail 
division rule to divide the groups into smaller ones (smaller than the mean) and larger ones (larger than the 
mean). The larger groups are de facto cities or natural cities as shown in Figure 3.  
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(a)  

(b) 
 

(c) 
 

Figure 3: (Color online) All natural cities in red identified for the three networks of (a) France, (b) 
Germany, and (c) UK (Note: the gray background shows the extracted blocks) 

 
We further define the concept of border number as a topological distance of a block far from the outmost 
border to map the center(s) of the country and the city or to characterize the scaling of geographic space 
(Figure 4).  
 

 
(a) 

 

 
(b) 

 
(c) 

Figure 4: (Color online) Mapping the border number using a spectral color legend (Note: the higher the 
border number the warmer the color; red and blue represent respectively the highest and lowest border 

numbers) 
 
The patterns shown in Figure 4 are illustrated from a topological perspective, which is very different from a 
geometric one. For example, given any country border or shape, we can partition the shape into equal sized 
rectangular cells (at a very fine scale, e.g., 1000 x 1000), and then compute the border number for the 
individual cells. Eventually, we obtain the patterns shown in Figure 5. As we can see, the centers of the 
countries are geometric or gravity centers that are equal distances to the corresponding edges of the 
borders. Essentially the country forms or shapes are viewed symmetrically. This is a distorted image of the 
countries, since the geometric centers are not true centers that the human minds perceive. This geometric 
view is the fundamental idea behind the concept of medial axis (Blum 1967), which has found a variety of 
applications in the real world in describing the shape of virtually all kinds of objects from the infinitely 
large to the infinitely small including biological entities (Leymarie and Kimia 2008). While medial axis is 
powerful enough in capturing a symmetric structure of a shape, it presents a distorted image of a shape as 
seen from Figure 5. This distortion is particularly true for France, since the true center Paris is far from the 
geometric or gravity center.  
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(a) 

 
(b) 

 
(c) 

 
Figure 5:  (Color online) Distorted images of the country based on the geometric distance far from the 

outmost boundaries 
 
We add some implications to understanding the morphology of organisms. The city and field blocks can be 
compared to the cells of complex organisms. We believe that this kind of scaling analysis of geographic 
space can be applied to complex organisms and we consequently conjecture that a similar scaling structure 
is appeared in complex organisms like human bodies or human brains. This would reinforce our belief that 
cities, or geographic space in general, can be compared to a biological entity in terms of their structure and 
their self-organized nature in their evolution. Our future work will concentrate on the further verification of 
the findings and applications of the head/tail division rule.  
 
For more details about the study, the reader is encouraged to refer to Jiang and Liu (2011) and references 
therein.  
 
Jiang B. and Liu X. (2011), Scaling of geographic space from the perspective of city and field blocks and 
using volunteered geographic information, Preprint, arxiv.org/abs/1009.3635. 
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1. Abstract  
Aviation systems are constructed by cities and airlines, which can be analyzed under a complex 
network framework. In this paper, considering the unique construction mechanism of airlines, we 
firstly clarify that China’s aviation system presents a hierarchical structure under the form of a 
network by detecting a scaling relation between clustering coefficient and node degree. It also 
indicates a more complex spatial pattern to be revealed. In the second section, in terms of the node 
strength and traffic flows on China’s aviation network, we conclude that the distance dependence 
effects should be explored on different geographic distance scales. Only for medium- and long-
distance travel, a gravitational law can be detected. This result paves the way as a reasonable 
reference for optimizing aviation systems and understanding the spatial organization of complex 
networks.  

2. Introduction  
Aviation systems, as an indispensable part for a country, have gained extensive attentions from 
various disciplines for a long time. In the last decade, the complex network theory introduced an 
innovative perspective to this field, and many real aviation systems have been studied under 
worldwide or national scales (Guimerà et al 2005, Liu and Zhou 2007, Bagler 2008). Various 
network characteristics have been studied and results consistently show that aviation systems 
present small world effects and scale-free properties. However, compared with statistical 
measurements, the spatial patterns of complex system have not earned enough attentions from 
network perspective until recently. Some researchers have began to discuss the geographical 
structure and distance effect of social networks and public infrastructure systems (Lambiotte 
2008, Jung et al 2008, Hu et al 2009, Krings et al 2009, Levy 2010). In terms of the statistical 
measurements, Ravasz and Barabasi (2003) discovered some networks, whose clustering 
coefficient and degree satisfy c(k)～k-1, should present a hierarchical architecture, while some 
distance-driven networks, such as power grids did not. Based on this conclusion, Liu and Zhou 
(2007) detected a hierarchical architecture in China’s aviation network and considered that the 
spatial impact was negligible for it. However, it seems undeniable that any aviation system will 
have some spatial component. In this sense, how do aviation systems really get rid of spatial 
effects, if, indeed, they do? What is the underlying spatial mechanism and how does the 
mechanism influence the traffic flows?  In this paper, we will go beyond the general topological 
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properties and put more focus on the unique distance dependence effect within China’s aviation 
system from a complex network perspective. 

3. Explicate the research question under a network framework 
It is worth mentioning that airlines are not physically constructed as links on the ground, and this 
feature may endow an aviation system with distinctive network topology and spatial pattern to 
some extent. In this part, we will explicate the problem step by step under a complex network 
framework. Before this, we would like to briefly introduce the network representation pattern. 
Due to the hop-by-hop architecture of aviation systems, we can construct China’s aviation 
network easily in terms of graph theory. A city is regarded as a node no matter how many airports 
it possesses, and a link is established as long as there is a directed flight between two cities. An 
aviation network with 140 nodes and 1044 edges is obtained.  
     As a starting point, Fig.1 depicts the correlation between node degree and clustering 
coefficient for 140 nodes in China aviation network. It is worth noting that the clustering 
coefficient is not independent of node degree but follows a scaling law in terms of degree. Such a 
relationship implies a hierarchical architecture for China’s aviation network. It means that some 
vertices form lower-level communities, which are then entangled into a higher-level community. 
In other words, the neighbors of hub cities are not mostly linked to each other. On the contrary, 
geographic organizations can not display hierarchical structures due to the spatial limitations on 
the link length (Ravasz and Barabasi, 2003). To understand this inference, we should 
preliminarily introduce the unique construction of aviation systems. Compared to other ground 
transportation systems, such as railways or metro networks, aviation systems are less limited by 
geographical conditions or investment cost because physical links are not constructed. But on the 
other hand, every airport has its precise geographic position, so the whole aviation system is 
undoubtedly space-embedded. Medium-length airlines are dominant in China’s aviation system, 
and flight flows also concentrate upon such routes. In comparison, extremely short or long routes 
are both rare out of cost considerations (Fig.2). In this sense, these seemly incompatible 
judgments actually indicate a more complex and challenged spatial pattern to be revealed. We 
can conjecture that China’s aviation network possesses an intermediate architecture between that 
of a social network and geography-involved system. 
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 Figure 1. The scaling correlation between node degree and clustering coefficient 
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Figure 2. The histogram of geographical distance between city pairs for CAS（Most geographical 
distances between two cities fall into the ranges of 500-2000 km） 

4. Distance dependence for different distance scales on China’s 
aviation network 
To explore the dynamics of the aviation network, we collect the weekly flight numbers between 
each connected city pair, and consider them as edge weights of the network. Firstly, we will 
depict the correlation between edge weight and spatial distance on China’s aviation system in 
Fig.3. In order to denote the pattern more clearly, 1044 values for two variables are respectively 
clustered with an equidistant interval. Remarkably, the plot shows a two-regime distribution, and 
the critical threshold is around 500km. 
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Figure 3. Dependence of the traffic flow on spatial distance (For better illustration, we set the distance 
interval between data points is 100 km. The result shows two-regime pattern and two different colors 

serve as a guide to distinguish)  
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    Then the traffic flow is investigated in terms of node strength and spatial distance. The result is 
presented by Fig.4. Similarly, the correlation should be considered in terms of two separate parts, 
and the critical distance is 474 km. No clearly dependence effect can be found for the first part. 
However for the second part, a gravitational law can be detected as, 

( )ij
ij

i j

w
f d

s s
∝                                                                           (1) 

     In which si is the node strength for city i, and wij is the edge weight in the aviation network, 
denoting the traffic flow between two cities. f(dij) represents the distance dependence function. In 
this case, it can be generalized as a scaling relation. The decay coefficient is 0.697, which is even 
smaller than 1. This result is reasonable. Powerful ground transportation may impose huge 
competitions on short-distance travel so that the advantages of aviation transportation only focus 
on the medium and long distances. On the other hand, due to the small-world property of the 
aviation network, people can transfer in some hub cities instead of constructing extremely long 
trips to minimize the cost. 

W ij /s i s j  = 13.065d ij
‐0.6971

R2 = 0.9568
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Figure 4. Regression results of dependence function based on the node strength (The red dots represent 
city pairs whose distances are less than 474km, while the blue dots are those with medium and long 

distances) 

5. Conclusion  
In this paper, we conclude that the unique construction of aviation system does imply a complex 
spatial mechanism. Although China’s aviation system presents a hierarchical structure from a 
complex network perspective, it still displays spatial effects. This directly contradicts the 
proposal of Rabasz and Barabasi (2003) that geographically constrained networks would not 
show hierarchical organization. In part this is because geographical effects are not as simple as an 
elementary limitation by spatial distance. On the contrary, more complex distance dependence 
effects show up when edges are analyzed under separate distance ranges. We cannot find a clear 
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law for short-distance travels, while for the medium- and long-distance travels in the system, a 
gravitational law can be summarized as a distance dependence function. The dynamic simulation 
can be examined by introducing more detailed and real-time data in the future. This would be a 
significant addition to understanding how to optimize the aviation network and to exploring the 
geography of spatial networks. 
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1. Introduction
OpenStreetMap (OSM) is an open source mapping application that is based on volunteered
effort to create a free and worldwide spatial database. The increasing density, importance and
acceptance of OSM increase the importance of understanding data quality, so that potential
users can evaluate fitness-for-purpose. When spatial quality analysis is performed through
comparison with a reference dataset, a data matching procedure is necessary for the
comparison to be meaningful. This matching is usually performed manually at data
preparation stage. After this, methods need to be applied to measure quality elements of
completeness, positional and attribute accuracy, which should be capable of dealing with
OSM’s heterogeneity in accuracy, density and attribute information.

So far, research in the UK for OSM (Haklay 2010, Basiouka 2009, Ather 2009), provided
valuable information on OSM for selected areas. However, all these studies include manual
procedures and methods that hinder repetition of the evaluation in a different and larger area
or in the future when OSM data is updated. Furthermore, they measure positional accuracy
using a simplified version of the Increasing Buffer Method (Goodchild and Hunter, 1997).

We slightly modify and integrate the Increasing Buffer Method in an automated method
that performs data matching and evaluates data completeness and positional accuracy of
OSM data, taking into consideration heterogeneity of Volunteered Geographic Information
(VGI). We apply the proposed method to the area of greater Liverpool.

2. Method

2.1. Data selection
As reference dataset, the ITN dataset of Ordnance Survey’s (OS) MasterMap was used, as the
most accurate official dataset covering the whole country. The method is applied in the
greater area of Liverpool (1780 km2) (fig. 1).
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Figure 1. Area studied

2.2. Dealing with VGI heterogeneity
Data was split along the OS 1 km2 National Grid and examined individually. In this way,
possible variations in data density and accuracy will produce different results for each area,
providing a more representative quality evaluation for VGI.

2.3. Data matching
As a first step, it is essential to remove any data that is not present in both datasets, so that
any further evaluation will refer to corresponding data. The proposed data matching method
combines geometric and attribute restrictions in a multi-stage approach (table 1).

Stage Basic Unit Constraints (in order of importance)
1 ITN Segment Geometric (Distance,Orientation,Length)
2 ITN Segment Attribute and geometric (name,type,Distance,Orientation)
3 ITN Segment Attribute and geometric (name,type,Distance,Orientation)
4 ITN Segment Geometric (Distance,Orientation)
5 OSM & ITN Feature Geometric (Length)
6 OSM Feature Attribute and geometric (name,type,Distance)
7 OSM Feature Geometric and attribute (Distance,Length,type)
8 OSM & ITN Feature Geometric (Length)

Table 1. The proposed multi-stage approach

We start by splitting features into segments. Stage 1 deals with corresponding segments
based on distance, orientation and length when there is only one possible candidate. Stages 2
and 3 look for an exact and similar name matching accordingly. Stage 4 deals with segments
with no name attribute. Stage 5 recomposes features and classifies them as matched or not,
based on the information gathered so far. Stages 6, 7 address non matched features to solve
cases not covered in previous stages. Stage 8 moves away from the tile-by-tile examination
and deals with datasets as a whole, to cover matching errors in cases of corresponding
features that because of their proximity to the tile border, they lie in different tiles.

A manual evaluation of data matching is performed in a randomly selected area of 80 km2

(fig. 2). The lengths of the misjudged features are calculated and compared with the dataset’s
length for each tile and dataset. Results prove the efficiency of the data matching method
(table 2).
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Figure 2: Data matching evaluation area

Dataset
Total

length(km)
Length

evaluated (km)
Missing data
length (km)

Surplus data
length (km)

Total
matching
error (km)

OSM 9042.138 694.469(7.68%) 1.575(0.23%) 2.298(0.33%) 3.873(0.56%)

ITN 10863.845 898.855(8.27%) 0.105(0.01%) 30.911(3.44%) 31.016(3.45%)

Table 2. Evaluation results: Total matching errors

2.4. Data completeness
The length of matched features is calculated and compared with the total dataset length for
each tile and for each dataset, producing a data matching percentage for OSM and ITN. Table
3 provides a rough classification of the possible matching scenarios. Classification however
depends on the percentages’ distribution and the crisp boundaries of table 3 cannot always be
appropriate for visualisation. Fuzziness due to spatial correlation may demand more classes
with variable size to represent the matching percentage distribution; in the studied area for
example, 90 % of the examined tiles achieved percentages above 50 % for both datasets.

Case
OSM matching

percentage
ITN matching

percentage
Mixed

percentage
Meaning

1 High High High Datasets agree with each other
2 High Low Low ITN is denser
3 Low High Low OSM is denser
4 Low Low Very Low Datasets contain different data

Table 3. General cases of matching score for each tile
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Since OSM dataset contains footpaths, steps, bridleways etc, the data matching results
show the agreement rather than the completeness between the two datasets. For the results to
be more representative of completeness, certain OSM road types are removed before the
matching process (e.g. steps, bridleways, footpaths, tracks).

2.5. Positional accuracy
After removing data not present in both datasets, we address positional accuracy. According
to Goodchild and Hunter (1997), if an increasing buffer is applied on a reference line, it will
accordingly cover increasing percentages of the tested line (fig. 3). The buffer could then be
considered as the accuracy of the reference dataset for the specific overlap percentage. We
can either provide a buffer value to calculate the percentage, or provide a desired percentage
to calculate the buffer (accuracy) using and iterative method. For the second option, which is
not applied in any study so far, we use the binary search algorithm rather than the suggested
formula by the authors.

Figure 3: Increasing buffer method (from Goodchild and Hunter ,1997, p.301)

The user defines a desired overlap percentage. A first buffer of 8 m is applied on the ITN
dataset and the OSM percentage falling into the buffer is calculated. If and as long as it is less
than the user-defined desired overlap percentage, the buffer is doubled and calculations are
repeated. When it percentage exceeds the desired one, the next buffer to be applied is half the
distance between the two buffers previously used that achieved a lower and bigger percentage
than the desired one correspondingly (table 4). The iteration process finishes when
percentage is within 0.1 of the desired one, or when successive buffers differ less than 0.1 m.

Tile Iter.1 Iter.2 Iter.3 Iter.4 Iter.5 Iter.6 Iter.7

SD3612
8m-

90.9%

16m-

95.7%

12m-

93.1%

14m-

94.1%

15m-

94.8%

15.5m-

95.3%

15.25m-

95.1%

Table 4. Example of the binary search algorithm, target percentage: 95%

To decide on a suitable ‘desired percentage’, tests were carried out in an area of 25 km2 in
central London (where OSM is proved to be accurate by previous research). The method was
applied for various percentages and the corresponding buffer values were examined. A value
of 95% was chosen to be used. Above this, differences in features’ length between datasets
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(due to varying data capture) as well as possible matching errors lead to unusually high buffer
values.

3. Results
Fig. 4, 5 show data matching percentages for each dataset, as well as their combination.
Generally ITN proves to be much more complete, as most of its data is not found in the OSM
dataset (table 5).

Figure 4: Data matching percentages for each dataset

Figure 5: Data agreement between ITN and OSM

OSM ITN

Total length compared (km) 9175.903 10863.845

Total length matched (%) 96.62% 84.91%

Average pct matched (per tile) 96.77% 80.77%

Table 5. Data Completeness results
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Fig. 6 shows the positional accuracy for 95% of OSM dataset per tile in the studied area
(average accuracy 6.94 m, standard deviation 3.46 m). However, 19 tiles with buffer sizes up
to 487 m had to be removed, as outliers. Due to different data capture methods, these tiles
contain corresponding objects with the OSM feature extending much further than the ITN
one, resulting in an increased buffer in order to reach the desired overlapping percentage, as
shown in fig. 7.

The proposed method could also be used to compare other road network VGI sources and
official datasets, provided that data structures include road name and road type attributes.

Figure 6: Positional accuracy of OSM Figure 7: Buffering problems

4. Future Work
More areas need to be examined and a deeper statistical analysis of the results is necessary.
Positional accuracy and data completeness results also need to be combined in search for a
possible correlation. Finally, evaluation of other data quality elements needs to be integrated
in the automated procedure as well.
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1. Introduction 

There are currently a large number of satellites orbiting the earth collecting vast 

amounts of Earth Observation (EO) data. With developments like Google Earth and 

Google Earth Engine, we are witnessing the democratization of EO through public 

access to high resolution satellite imagery via the internet. One important EO-derived 

product from satellites is global land cover. In the last decade, three global land cover 

products have been created: GLC-2000 (Fritz et al., 2003), MODIS (Friedl et al., 

2002) and GlobCover (Bicheron et al., 2008). These datasets are currently used as 

inputs to a range of different global, regional and national scale applications, e.g. 

resource assessments of forest and agricultural land and inputs to global economic land 

use models. 

There are, however, problems with land cover. A pixel-by-pixel comparison reveals 

areas of the world where these maps do not agree, in some cases by large amounts 

(Fritz and See, 2008). As a result we do not know precisely how much land is 

currently forested or under cultivation because the uncertainty in the estimates 

provided by these products is too high. This has clear implications for determining 

deforestation rates and how much land is available for. Users of these products also 

have a difficult choice, i.e. which is the best product to choose and what effect will this 
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choice have on a particular application? For example, Fritz et al. (2010a) have shown 

that comparing global land cover (GLC-2000) with the equivalent MODIS product 

produces large areas of disagreement when assessing the amount of agricultural land 

available in parts of eastern Africa. The problem with these datasets lies in their 

validation, as at present, there are an insufficient number of in-situ validation points, 

which can serve both as input data for calibration algorithms of satellite data, and to 

validate land cover products. The Geo-Wiki application, developed by Fritz et al. 

(2009), has integrated Google Earth and crowd-sourcing as a way of increasing the 

amount of publically-supplied in-situ validation points. The ultimate goal is to use this 

crowd-sourced data to create a hybrid land cover product that is better than any 

currently available. The aim of this paper is discuss how validation from Geo-Wiki 

and a rule-based map integration algorithm could be used to develop such a hybrid 

product.  

 

2. The Geo-Wiki Land Cover Crowd-sourcing Application 
 

The Geo-Wiki Project (www.geo-wiki.org) was developed to encourage a global 

network of volunteers to help improve the quality of global land cover maps through 

crowd-sourcing (Fritz et al., 2009). Geo-Wiki overlays the GLC-2000, MODIS and 

GlobCover onto Google Earth as well as maps of where these different land cover 

products disagree. Volunteers can choose any area of land on the earth or an area of 

high disagreement. Geo-Wiki shows them where the pixels from each land cover 

product overlap and the land cover types as shown in fig. 1. The light blue rectangle is 

GLC-2000 and has the lowest resolution of 1km. The dark blue square is one pixel 

from the MODIS land cover product while the red square is GlobCover at the highest 

resolution of 300m. Volunteers are then asked to determine whether the land cover 

maps at that point agree with what they see based on Google Earth. Their input is 

recorded in a database, along with any photos they upload. At present there are 300 

users registered on the system who have contributed more than 15,000 validation 

points.  

 

3. Development of a Hybrid Product through Map Integration 

Fritz et al. (2010b) have developed a methodology for combining five different land 

cover maps to create a cropland or forest extent using expert knowledge and national 

and sub-national statistics. However, to create a global land cover map is more 

complicated because the legends of the different land cover products do not match. An 

aggregated and simplified legend to which the different land cover products can be 

GeoComputation 2011

243

Session VGI & Computational Infrastructure



matched directly must first be created (e.g. Herold et al., 2008). This is already 

available on Geo-Wiki as a simplified legend with 11 classes. 

 

 
Figure 1. Illustration of Geo-wiki.org for improving land cover information 

 

To use the validation data for creating a hybrid map, there must be sufficient 

confidence in the data before they are used in the new hybrid product. To gain 

confidence, people are directed to the same validation site so that a frequency 

distribution can be derived and agreement can be reached on which product is better. 

Once a certain threshold had been achieved, the point qualifies to be a validation point 

to be used in the hybrid map generation. Those validation points where the confidence 

is low will not be used in the hybrid map production  

To create a hybrid map, a rule-based system is currently under development. For 

each pixel, the system will query whether there is disagreement between the land cover 

products as follows: 

 

a. Where no disagreement exists, the hybrid land cover map will be assigned the 

class from the aggregated legend unless validation data exist at that pixel which 

disagrees with the land cover products. If there is sufficient confidence in the 

validation data, then these data will be used to correct the information from the 

land cover products in the new hybrid product.  

b. Where disagreement between land cover products exists, the validation data 

from Geo-Wiki will be used. Where validation data of a sufficient confidence are 

available at that pixel, this will be used to assign the land cover class. Where no 

validation data exist, we will employ a search algorithm to determine if the same 

corrections have been applied using validation points within a certain radius, 
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which will be used to assign the land cover class. This will also increase our 

confidence in the validation sites.  

 

This rule-based system will be implemented in Geo-Wiki in the next few months and 

an example of a hybrid map and the issues that have arisen from the implementation 

will be presented at the conference. 

 

4. Ongoing Developments and Further Research 

There are several ongoing developments with Geo-Wiki to improve the volume and 

coverage of data collected through the website. The first addresses the problem that 

there is currently little incentive for volunteers to willingly validate global land cover. 

One method of providing this incentive will be to develop a game that encourages 

users to play while simultaneously providing land cover validation information. An 

Austrian Funding Agency project called LandSpotting, which will begin in Feb 2011, 

addresses the creation and implementation of such a game. A second development is 

from the research community. A workshop on land cover validation (sponsored by the 

International Livestock Research Institute (ILRI) and to be held in June 2011 at 

IIASA) will bring together land cover and validation experts to discuss methods for 

creating hybrid products and the sharing of land cover products and validation data via 

Geo-Wiki. This will increase the size of the validation database and particularly the 

coverage across Africa and south-east Asia. The progress on these advances will also 

be presented at the conference. 
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1 Introduction 

Geographic Information Systems (GIS) have evolved from desktop GIS to Web-

based GIS, and then to geospatial information Web Services, so what comes next? The 

advancement of Web Service technologies redirects the focus of geospatial services  

from data services providing information and static knowledge to geospatial processing 

services and their combinations (Forster, 2005; Hey and Trefethen, 2005). Geospatial 

information services and their combinations produce value-added information and de-

rived knowledge. Meanwhile, emerging semantic tools facilitate interaction between 

service and service, and between users and services (Bemers-Lee, et al., 2001; Yue, et 

al., 2007).  

This paper envisions the next step of GIS as a widely-connected, interoperable and 

semantically supported Geospatial Service Web (GSW), a future framework for geospa-

tial information technology. Data, information and knowledge services are essential 

bricks, but the GSW features geospatial processing services and their combinations that 

collaborate to simulate, deduce and predict geographic phenomena, processes and re-

sults. In the data source side, GSW extends its antenna from static databases to real-time 

data collecting sensors. On the application side, GSW extends capacity from mere visu-

alization to real-time model automation for decision making. GSW embraces an intelli-

gent mechanism for auto-gestation by combining geospatial processing services and 

deploying, registering these combinations in repository geographic models. This paper 

introduces our pioneering thoughts about the rationale, conception, framework, technol-

ogies and standards for building the GSW. A prototype system was developed to dem-

onstrate and illustrate the initial shape of GSW.  
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2 Concepts of Geospatial Service Web 

The Geospatial Service Web (GSW) is a virtual geospatial infrastructure which inte-

grates various geospatial-related resources. GSW unifies the functions of a geospatial 

acquisition system, a data transformation system, distributed spatial data collection, a 

high-capability server system, a large volume storage system, remote sensing and a GIS 

system. These functions are implemented by web services and communicated through 

the standardized protocols of the Internet. Fig. 13.1 shows the logical components and 

structures of GSW. With GSW, users are able to effectively describe, organize, manage, 

manipulate, interchange, search and release the geospatial-related resources. 

 

     
 

Fig. 1. The procedure of geospatial service from sensor to knowledge 

 

    A registration center is the core of the virtual infrastructure. It accepts and archives 

the registration information of all resources. Thus, all of the resources can be acquired 

and accessed through the center. Sensor resources  incorporate all kinds of sensors for 

data acquisition including space-borne sensors, air-borne sensors and handheld devices. 
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The original Earth Observation data acquired by sensors comprises a huge geospatial 

data resource. Processing resources are the collections of theoretical models, process 

models and behavior models which are necessary to pre-process, transform, compact, 

project, generalize, visualize geospatial data for a specific application context. In many 

cases, these models can be composed into an orderly integrated model to implement a 

complex function and further to derive potential information and knowledge from data-

sets. Finally, all of the resources are combined by the associated web services and pro-

vider services as a whole for geospatial-related applications. In addition to the geospa-

tial domain resources , the general resources must be recognized and considered, 

including computing, network and storage are also indispensable for GSW, but they are 

beyond the theme of this chapter.  

In conclusion, the mission of GSW is to: 

 acquire global geospatial data for all seasons, all days and  in all directions by all 

kinds of sensors on satellites, aircraft and on the surface. 

 chain the whole process seamlessly from sensors to application services by uni-

fied information networks, including satellite communicate, data relay network 

and wired or wireless computer communication networks.  

 register sensors, computing resources, storage resources, internet resources, 

geospatial data and manipulate software, geospatial knowledge on the Internet, 

and process geospatial data online quantitatively, automatically, intelligently and 

in real-time. 

 provide geospatial services, compose virtual service chains and transmit user-

required information by the most effective and efficient means. 

3 Framework of Geospatial Service Web 

    Based on the concept of a geospatial service web described in the previous section, 

Fig.2 illustrates the corresponding framework including five basic components: a geos-

patial resource component, a geospatial service component, a geospatial service applica-
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tion component, a geospatial service security component, and a geospatial service stan-

dard component.  

Geospatial resource components are the cornerstone that involves almost all applica-

ble resources in the digital environment. The Geospatial service component is the bridge 

between geospatial resources and geospatial service applications, and provides func-

tions with services such as accessing, processing, transporting, and visualizing data. 

Some geospatial services can be combined into a specific application system, or be de-

veloped into individual application tools, or be used to build a visualization environ-

ment for geospatial data. Geospatial standards are fundamental supports for communi-

cations and data sharing between heterogeneous components in the framework. The 

geospatial service security component protects geospatial data and services from illegal 

usage or attack. 

 
Fig.2. Framework of Geospatial Service Web 
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4. Implementation of Geospatial Service Web 

Fig. 3 shows the system architecture towards the implementation of GSW. The im-

plementation of GSW will integrate and communicate different types of space-earth da-

ta acquired by using various earth observation technologies such as satellite, airplane 

and in-situ observation. The application areas of GSW are diverse, such as meteorology, 

agriculture, forestry, transportation and digital city. The GSW is built upon open, con-

sensus-based standards (i.e. specifications for geospatial information resources in Fig. 

3) that will allow the “plug-and-play” of community-developed, standard-compliant 

components and services. The following paragraphs provide detail descriptions of the 

major components for the implementation of GSW. 
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Fig. 3 System architecture towards the implementation of GSW 

 

Fig.4 shows the user interface of a prototype for Geospatial Service Center based on 

the architecture described in the section above. The left tree lists the available services 

registered in the center, e.g. geospatial data services, processing services, and map por-

trayal services. This center accepts the registration of data type, data instance, service 

type, service instance and map symbols. Users can view the information for a service by 

clicking it on the tree.  
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The prototype provides an environment for composing service chains as application-

specific workflows. Fig. 5 illustrates an example of a service chain composed for flood 

submergence analysis. From the palette on the left column, the useful services are cho-

sen and dragged to the right area. In turn, these services are chained in a logical order 

according to the specific requirements for flood submergence analysis. Finally, an ab-

stract chain will be built and stored as an expert workflow. The abstract chain will be 

transformed into a BPEL service chain and executed by the engine of service chain. 

This kind of abstract chain can be reused and adjusted for different applications. Fig. 6 

presents the result of the service chain for flood submergence analysis. The dark part in 

the center of the map is the area submerged by flood. 

 

 
 

Fig.4 The user interface of a Geospatial Service Center prototype  
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Fig. 5 A service chain for flood submergence analysis 

 

 
 

Fig. 6 The result of the service chain for flood submergence analysis 

5. Conclusion 

With Web Service technology advancements, the services deployed and distributed 

on the Internet are not only data services comprised of implied information and static 
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knowledge, but also geospatial processing services, other related geospatial services and 

their combinations, which are generating user-induced information and dynamically 

growing knowledge. Semantic tools meanwhile, are aiding the interaction between ser-

vice and service, and between users and services. Thus, a new concept, Geospatial Ser-

vice Web (GSW), as a basic umbrella framework is the future of geospatial information 

technology, as proposed in this paper. Data, information and knowledge services are 

still the essential bricks of this web, however the focus of the GSW web is on atomic 

processing and processing combination services that collaborate to simulate, deduce and 

predict geographic phenomena, processes and results. This new concept will also ex-

pand the reach of geospatial connectivity to embrace both the spatial and temporal di-

mensions. In the data source rim, this web extends its antenna from static database to all 

data collecting sensors from satellite-based, airborne to ground and mobile. At the ap-

plication end, this web realizes applications from visualization to real-time automatic 

decision support. What is more, this web will have a mechanism of rule-based auto-

gestation. New combinations of geospatial processing services can be deployed, regis-

tered and included in the repository geographic models. As a pioneer effort, this chapter 

systematically preaches this new thought, outlines the concepts, framework, technolo-

gies and standards of GSW.  
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1. Introduction 
The improvement of modern remote sensing technology, e.g. LiDAR (Light 

Detection and Ranging), has resulted in the explosive growth of spatial datasets [1]. 
As the size of LiDAR point clouds increase from gigabytes to terabytes, even to 
petabytes, it is impossible to process them anymore within a single desktop personal 
computer (PC). At the same time, the multicore-enabled Central Processing Unit 
(CPU) are becoming ubiquitous from the single desktop PC to clusters[2]; while the 
costs to build a powerful computing cluster are getting lower and lower. Therefore, it 
is natural and necessary that typical users employ high performance clusters (HPC) to 
efficiently process massive LiDAR point clouds [3, 4].  

Inherently different from classical compute-intensive applications, the kernel of 
processing massive LiDAR point cloud is not complex but rather simple; nevertheless 
it still requires extensive computing resources and lengthy execution time. Hence, this 
type of application can be characterized as a data-intensive application [5]. 

Data-intensive applications involve heavy I/O operations. The decomposition, 
scheduling, load-balance are much different from traditional compute-intensive 
applications. Thus, porting such a data-intensive application into a HPC context is a 
challenging task. This paper proposes a universal parallel framework in a HPC 
environment to facilitate this transition. The framework supports a Split-and-Merge 
programming paradigm for users/programmers, exemplified by processing massive 
LiDAR point clouds. Under this paradigm, our framework can automatically 
parallelize and schedule user’s tasks. 

 

2. A universal parallel framework 

2.1 A Split-and-Merge paradigm  

After evaluating many algorithms available and in use for processing LiDAR 
point clouds, a common characteristic of all of them is data locality. Data locality 
means that the kernel of these algorithms only involves the proximity data of input 
element. This characteristic is the basis for processing LiDAR point cloud in a 
split-and-merge paradigm. In this paradigm, the entire LiDAR point cloud is first 
decomposed into many discrete blocks; then these blocks are individually processed 
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by the original algorithm; and finally the intermediate results are merged into the 
actual output.  

The complete execution graph can be divided into two categories according to 
the decomposition and merge patterns: two-level n-ary tree, and n-level binary tree, 
illustrated by Fig.1. In the first type, all the intermediate results are merged in a whole; 
in the second type two adjacent intermediate results are merged hierarchically.  

 
Fig.1 two types of Split-and-Merge paradigms 

(Left: two-level n-ary tree; right: n-level binary tree) 
 

For a specific LiDAR algorithm, users/programmers only focus on actual 
implementation of two processing steps: Split and Merge. After users implement these 
two steps and choose the execution pattern, the framework will automatically generate 
a collection of scripts to enclose these individual tasks. 

 

2.2 Data decomposition and block organization 

Discrete decomposition of the LiDAR point cloud is the prerequisite for the Split 
and Merge steps. A kd-tree (short for k-dimensional tree) based decomposition 
schema was designed to carry out this decomposition (here k is 2).The bounded 
extent of the entire LiDAR point cloud is divided into n*m rectangle blocks which 
represents the parallel granularity. A 2D kd-tree is recursively constructed to cover 
these point blocks. Each point block is then mapped to the corresponding leaf node 
of the constructed kd-tree. All the points are assigned to point blocks later. Some leaf 
nodes with no available points are marked as null. The internal nodes also represent 
the intermediate results during the whole execution process. The kd-tree based 
decomposition schema can be illustrated by Fig.2. 
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Fig.2 The kd-tree based decomposition schema 

The framework also has an index module to organize the discrete blocks (Data 
Scheduler). This module also stores the current status of block distribution among 
cluster nodes and provides the real-time information for the later data-aware 
scheduling module (Task Scheduler). These two modules will be elaborated in section 
2.3. 

2.3 A universal parallel framework 

Our universal parallel framework is built on a typical SMP (Symmetric 
Multiprocessor) cluster, illustrated in Fig.3. In a SMP cluster, each node is equipped 
with two or more symmetric processors. Each processor is also multicore-enabled. 
Thus, there are two levels of parallel computing resources available for one SMP 
cluster: inter-node and inner-node. A customized Torque [6] runs on the master node. 
A special data-aware scheduling strategy was designed for the custom Torque to 
schedule user’s decomposed tasks. 

 
Fig.3 the illustration of one typical SMP cluster 

 
Fig.4 shows the basic data flow for our proposed framework. The framework is 
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controlled by the task/data scheduler. The task scheduler creates and manages the 
processes that run all Split and Merge tasks. The data scheduler manages data input 
for task execution.  

assign

assign

 
Fig.4 the basic data flow in the parallel processing framework 

 

2.4 Performance evaluation 

Here, the experimental cluster consists of 5 nodes, in which one is the master 
node and the other four are slave nodes. Each node is a 2-Way-Quad-Core computer 
running Fedora 13, equipped with two Quad-Core Intel Xeon E5405 (2GHz in each 
core), 8GB DDR2-667 ECC SDRAM, and 1TB hard disk (7200 rpm, 32 MB cache). 
The LiDAR point cloud used for this experiment was collected from Gilmer County, 
West Virginia in 2004, as illustrated in Fig.5. The point cloud contains 0.883 billion 
points and occupies 16.4 GB of external space. The entire dataset was partitioned in 
advance into 1,000m by 1,000m square blocks. The total number of point blocks was 
2,173.  
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Fig.5 The Gilmer County dataset 

 
 
Two common LiDAR processing algorithms, IDW interpolation and Delaunay 

triangulation (DT), were parallelized to examine the suitability of the proposed 
universal parallel framework. The detail parallelization of these two algorithms can be 
seen in [7, 8]. All the Split and Merge tasks were written in C++ and compiled with 
linux gcc 4.3. The experiment results demonstrated that significant speedup and high 
data-throughput are achieved, illustrated by Fig. 6. At the same time, the memory 
footprint was very low compared with the size of the input point data. 

 
Fig.6 Speedup of parallel IDW&DT in this framework  

when scaling the number of processors 
 

3. Conclusion 

GeoComputation 2011

260

Session VGI & Computational Infrastructure



 
This paper proposed a universal parallel framework for processing massive 

LiDAR point clouds in a HPC environment. Within this framework, the 
user/programmers are provided a Split-and-Merge programming paradigm. In this 
way user/programmers can focus on the simple functional expression of their specific 
algorithm, and leave parallelization and task-scheduling to the runtime system. This 
framework automatically and intelligently handles key scheduling decisions for tasks 
and data reducing overhead related to task spawning and data communication. Two 
LiDAR algorithms, IDW and DT, are evaluated to prove the suitability of our 
proposed framework. 

 

4. Acknowledgement 
This work is supported by the Natural Science Foundation of China (Grant: 

40971211). 
 

5. References 
[1]. Leigh, Charlotte L, Kidner David B,Thomas Malcolm C. The Use of LiDAR in 

Digital Surface Modelling: Issues and Errors. Transactions in GIS, 2009, 13(4): 
345-361 

[2]. Kunle, Olukotun,Lance Hammond. The future of microprocessors. Queue, 2005, 3(7): 
26-29 

[3]. Hongchao, Ma,Wang Zongyue. Distributed data organization and parallel data 
retrieval methods for huge laser scanner point clouds. Computers & Geosciences, 
2011, 37(2): 193-201 

[4]. Huang, Fang, Liu Dingsheng, Tan Xicheng, Wang Jian, Chen Yunping,He Binbin. 
Explorations of the implementation of a parallel IDW interpolation algorithm in a 
Linux cluster-based parallel GIS. Computers & Geosciences, 2011, 37(4): 426-434 

[5]. Cannataro, Mario, Talia Domenico,Srimani Pradip K. Parallel data intensive 
computing in scientific and commercial applications. Parallel Computing, 2002, 28(5): 
673-704 

[6]. Staples, Garrick, TORQUE resource manager, in Proceedings of the 2006 ACM/IEEE 
conference on Supercomputing. 2006, ACM: Tampa, Florida. p. 8. 

[7]. Guan, Xuefeng,Wu Huayi. Leveraging the power of multi-core platforms for 
large-scale geospatial data processing: Exemplified by generating DEM from massive 
LiDAR point clouds. Computers & Geosciences, 2010, 36(10): 1276-1282 

[8]. Wu, Huayi, Guan Xuefeng,Gong Jianya. ParaStream: A parallel streaming Delaunay 
triangulation algorithm for LiDAR Points on Multicore Architectures. Computers & 
Geosciences, 2011, DOI: 10.1016/j.cageo.2011.01.008 

 

 
 

GeoComputation 2011

261

Session VGI & Computational Infrastructure



Using a Moving Window SVMs Classification to Infer 
Travel Mode from GPS Data 

 
A. Bolbol, T. Cheng, J. Haworth 

 
 

Department of Civil, Environmental and Geomatic Engineering, University College London,  
Gower Street, London WC1E 6BT, United Kingdom 
Email: {a.bolbol; tao.cheng; j.haworth@ucl.ac.uk} 

 
 

 

1. Introduction  
Understanding travel behaviour is important for studying tourist activity, the quality of 
life, a strike’s impact on transportation and other environmental impacts. However, it is a 
challenge to model travel behaviour due to its complexity and diversity. Attempts have 
been made to infer meaningful information about travel behaviour from positional data 
obtained from sensors such as GPS.  Among these types of information is the travel mode 
(e.g. cycling, walking, bus and so forth). This inference could largely replace or complete 
a lot of the feedback required by users when labelling and tagging their travel diaries. 

 
Previous machine learning (ML) approaches that attempt to derive travel modes from 

GPS data suffer from design decisions that limit their accuracy and flexibility. For 
example, Zheng et al. (2008) compares different machine learning methods such as 
Decision Tree and Bayesian Net to segment tracks into partitions of different travel 
modes. However, the process depends on real-life assumptions that could differ from one 
person to another. Liao et al. (2007) uses Hierarchical Conditional Random Fields to 
infer the travel mode from GPS fixes taking the user’s context into consideration. It 
achieves a good accuracy; however, it relies heavily on temporal features such as the 
duration and time of day, which again differs from one person to another. Other methods 
use Neural Networks to do a similar inference (Gonzalez et al., 2008); however, Neural 
Networks deliver multiple solutions associated with local minima and for this reason may 
not be robust over different samples.  
 

In this work we attempt to identify travel modes from sparse GPS data, without 
information or assumptions about the user’s context which is usually needed in other 
approaches. We use Support Vector Machines (SVM) to perform the inference from 
velocity values obtained from GPS data. Due to its high quality of out-of-sample 
generalization and ease of training, SVMs provide far beyond the capacities of traditional 
ML methods used in previous research. However, SVMs depend on data with multiple 
attributes to work best. To overcome this, we use a moving window that classifies 
instances of data sequences. We complement this by using logical filters that apply a 
transition matrix. 
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2. Dataset  
The training dataset used for testing is a 2 months of a multi-modal track of three users 
between 01/05/2010 and 28/06/2010 (figure 1). The track is collected within London at 1 
minute frequency. London is chosen due to its complexity and the diversity of its 
transportation networks. The dataset was labelled by the users as to which travel modes 
were used. The dataset was then filtered for the “cycle”, “bus”, “walk” and “stationary” 
modes, so as to use SVMs to infer these modes. The rest of the modes, such as the “tube” 
and “train” modes, are excluded because they could be easily inferred using GIS to 
perform network matching. 
  

 

 
 

Figure 1. The Study Area in London 

The number of fixes of the “walk” mode in the dataset was the highest amongst other 
modes and almost as double as the second highest mode (“stationary”). This 
demonstrates the high occurrence of walks within an individual’s daily journey. This is 
due to the fact that walking often occurs as an intermediate link between different modes. 
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Figure 2. A Sample of Travel Modes Velocities (Outliers>15m/s Removed) 

Figure 2 shows the respective velocities for the first 200 fixes of each mode of the 4 
chosen modes in this dataset. Outliers due to the GPS errors are removed for values 
>15m/s. The figure demonstrates a clear confusion and overlap between “walk” and 
“stationary” modes. This is due to the existence of many small stationary segments 
embedded within “walk” segments. There also appears to be almost a clear overlap 
between “cycle” and “bus” modes. This is due to the similarity of the general speeds of 
these travel modes in urban areas. This emphasizes the nature of different forms of 
commute in the London network. 

 

3. Using Support Vector Machines for Classification 
Velocity values are calculated for every arc of the track. However, non-fix indoor activity 
causes false velocity calculation for the first point that follows them, therefore, these 
values are excluded. Data sequences of the same travel modes are then aggregated and 
prepared for the SVMs learning process. 
 

3.1 Instance-based Classification 
 

Support Vector Machines work best in a multi-attribute environment. Therefore, once 
the data is aggregated, it is divided into equal sized instances of several arcs as 
demonstrated in table 2. This simulates the multi-dimensionality of the data in the 
learning process which SVM is best at dealing with. Another reason for using instances is 
that for a more accurate classification, it is more meaningful to learn a certain period of a 
trip than one single value which could be misleading (e.g. bus stopping at the traffic 
lights could be misclassified for walk or stationary). 
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Table 1. The Division of Data into Equal-Sized Instances  
(Three in this case) 

 
The data instances then are divided into two thirds and one third for training and 

testing respectively. These similar-mode instances enter the SVMs learning process using 
a stationary Gaussian kernel with a radial basis kernel function for training due to their 
flexibility. The SVM classification machine is also trained using a multiclass method.  

 
As shown in figure 3, the classification gives better results for longer data instances. 

However, a longer sequence of mixed travel modes could introduce higher complexity. 
Therefore, we chose to use the small-sized instance that still contains a decent number of 
arcs to represent a realistic sequence; in this case three. 

 
 

 
 

Figure 3. SVM Classification Accuracies due to the Usage  
of Different Lengths of Data Instances 
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The accuracy achieved by this primary classification is around 71%, and the confusion 
matrix is illustrated in table 3. A good separation between the walk-stationary and the 
bus-cycle modes is achieved. However, the instances are non-realistic since they assume 
that the track is already segmented into similar-mode segments. 

 
 

Inferred 
Truth 

Bus Cycle Stationary Walk 
Bus 20 16 0 2 
Cycle 19 38 0 2 
Stationary 0 0 41 4 
Walk 2 8 34 110 

 

Table  2. Confusion Matrix for 3-Arcs-Lengthed Instances 

 

3.2 SVM moving window algorithm 
 

To resolve the previously stated problem, we propose applying a fixed-length moving 
window on the whole track, and moving that window on an arc-by-arc basis along the 
track’s velocity values. Every time the window slides, a classification of that instance of 
data is performed. Figure 4 (a & b) illustrates this method, where a moving window 
classifies each 3-sized instance moving arc-by-arc along the track. 
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Figure 4. A Moving Window Classifying Each 3-Sized Instance Moving Arc-by-Arc 
along the Track (a) Illustrated Abstractly Above, and (b) with Velocity against Time 

Below 

After each instance is classified, the algorithm runs through the new inferred labels 
and changes any improbable inferences such as a “bus” instance between a series of 
“cycle” instances. It also applies a transition matrix (Table 4) which amends the sequence 
according to the probability of switching between certain modes (such as from cycle-bus-
cycle), and changes the less probable mode. This matrix is based on (Zheng et al., 2008) 
and is compiled from this research. As we could note, almost all modes are followed by a 
“walk” mode. “Walk” and “stationary” modes are very interchangeable while a portion of 
“cycle” is followed by a stationary mode due to the chaining-the-bike activity. 

 

Travel modes Walk Stationary Bus Cycle 

Walk  59.8% 12.6% 27.6% 

Stationary 50.0%  36.5% 17.5% 

Bus 98.7% 0%  1.3% 

Cycle 76.3% 23.7% 0%  
 

Table 3. Transition Matrix of Travel Modes 
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The amended classified instances are then switched back again into classified arcs by 
reverting the idea of the moving window. Once a change in mode occurs, this could 
indicate that the majority of the 3 arcs within that instance have changed into a new travel 
mode, and hence the first of these 3 arcs is classified as the previously ending mode. 
Figure 5 illustrates an abstract example of these classified arcs. 

 

 
Figure 5. The Result of the Moving Window after Assigning the Classification to the Arc 

Level 

4. Results  
The results of the moving window algorithm reveal an accuracy of 70 %, without having 
to pre-segment the track.  Figure 6 shows the classification results compared to the actual 
classes. Table 5 illustrates the confusion matrix of this classification. The high confusion 
between “stationary” and “walk” modes is not an error at all; in fact it is due to the 
existence of lots of actual stops within any walking pattern. 
 
 

Inferred 
Truth 

Bus Cycle Stationary Walk 
Bus 115 98 13 21 
Cycle 162 414 17 28 
Stationary 8 6 407 160 
Walk 86 39 235 848 

 
Table 4. Confusion Matrix of the Moving Window Algorithm 
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Figure 6. The Classification Results Compared to the Actual Classes (Sample) 

Merging both classes into a single class called “walks” and re-running the algorithm 
again, an accuracy of 85% was achieved. This demonstrates a major improvement on the 
previous accuracy with no pre-segmentation. Table 6 illustrates the confusion matrix of 
this second run, while figure 7 shows the classification results compared to the actual 
classes. Some classification errors could be noted in the middle of long segments, such as 
the “walk” segment at the first 200 records of the dataset in figure 8. 
 

Inferred 
Truth 

Bus Cycle Walks 
Bus 125 105 32 
Cycle 149 395 29 
Walks 97 57 1668 

Table 5. Confusion Matrix of the Moving Window Algorithm Merging “Walk” and 
“Stationary” Modes 

 
Figure 7. The Classification Results Compared to the Actual Classes – with Merged 

“Walk” and “Stationary” Classes (Sample) 
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5. Conclusions  
We provided a novel approach for identifying the travel mode from GPS data. In contrast 
to existing techniques, our approach uses one consistent framework to classify each arc 
into its respective travel mode. This is done using SVMs to learn from data instances 
which each consist of a sequence of similar-mode data.  
 

The moving window approach overcomes SVMs’ shortcoming of requiring multiple 
attributes to give best results by learning from these instances. The power of SVMs here 
is taking motion patterns of each travel mode into consideration. The classification is 
carried out using a moving window to classify instances on an arc-by-arc basis along the 
track’s velocity values. After applying a transitional matrix and merging intermediate 
modes, our model achieves 85% accuracy rate without the need of having pre-segmented 
data. The next task is to attempt to further separate “cycle” and “bus” modes which seems 
to be of high confusion because of their similar motion characteristics. 
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Introduction

Openshaw et al. (1999) wrote about their experiences putting the Geographical Analysis Machine
(GAM) on to the Internet to allow a wider use. Their motivation was that, at the time, proprietary
GIS programs lacked sophisticated geographical analysis technology. The experimental system
that was developed relied on a complex set of Unix scripts and FORTRAN code and proved to
be unsustainable. The system also required a text file containing the locations of population and
case points which was difficult to create for a näıve user. Lastly it required users to upload these
potentially confidential information to a remote server trusting the server administrators who were
unknown (but obviously trustworthy). In the last decade, since the original attempt to put GAM
on the Internet, the situation appears not to have improved. There are still demand for more user
friendly and secure ways of exploring geographical data for evidence of spatial clustering. Robertson
and Nelson (2010) state that ”...training and software availability were cited as the primary barriers
to the uptake of space-time disease surveillance...” and provide a general assessment that for the
programs they tested - handling the data formatting was difficult and the interpretation of outputs
was challenging.

Motivation

This paper seeks to solve the same problem that Openshaw et al. (1999) attempted, making use
of modern developments in cloud and grid computing, distributed spatial data management and
improved computing power. From the literature (e.g. Olsen et al., 1996; Robertson and Nelson,
2010) there is a demand from epidemiologists for a simple system that will: import their case data;
import population data (preferably from a Census site directly, or from files they download from
one); and, exports a geographically referenced, easy to understand map of the potential clusters
for them to investigate.

As with anyone handling confidential data, epidemiologists are concerned about data security.
Any system that is to be used with confidential data needs some form of guarantee that the data
will be secure and will not become available to others (at least not provided without clear usage
restriction and only to other users of those confidential data). To guarantee the security of a
software system running on a networked machine, the software source code needs to be inspected
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and the authority for a guarantee trusted. A system that is completely open source and based on
standards compliant open source service components allows anyone to inspect the source code and
this helps to verify that data is secured in the system. Additionally, being open source allows for
the academic rigour of the algorithm implementations to be assessed. In a closed source system,
arguably there is too great a risk with respect to confidential data security.

Implementation

The system described is programmed in Java using the GeoTools library (Turton, 2008). The system
makes use of the Web Processing Standard (WPS) (OGC, 2007) as implemented by GeoServer
(an open source server which implements other important Open Geospatial Consortium (OGC)
standards). Users are able to seamlessly import data from compliant Web Feature Servers (WFS)
(OGC, 2005) and export the results via a Web Map Server (WMS) (OGC, 2002) as a layer or
in a variety of georeferenced imagery formats. Thus a user need only install the latest version of
GeoServer and add the required jar files to have a fully functioning system on a computer with Java
installed. Ideally a user will be able to configure their system to pull data from a remote server
which is serving up population data from a central WFS. WPS allows for the user to specify the
input as coming from a sub-process, so a user can construct a model to calculate a more complex
expectancy or Population At Risk (PAR) estimate. However, if needed, it is simple for the user to
add required PAR data layers to their own GeoServer instance.

To allow for the generation and comparison of results from different spatial clustering methods,
the system described has the following methods:

• The GAM/K system (Openshaw, 1996) which carries out an exhaustive search by applying a
range of circles to the whole spatial area of the data set. While this method is sure to find a
cluster (if one exists) it can be prohibitive to carry out this level of search on large data sets.

• The rare disease cluster detection method of Besag and Newell (1991) searches for clusters
by examining circles centred on cases with a radius determined by the k neighbouring cases.
This reduces the number of circles to be examined but the nearest neighbour calculation can
be time consuming with large data sets.

• The SatScan algorithm (Kulldorff, 1997) makes use of a scan statistic calculated for circles
centred on each population point and extended to include up to half the total population at
risk. The paper is unclear on the preferred method to expand the circle so we opt to extend
the circle point by point though this leads to issues with nearest neighbour calculations again.

• A random circle method formalized by Fotheringham and Zhan (1996) allows a quick but
non exhaustive scan of the data set. For very large datasets a user might choose to search
quickly using random circles across the whole map and then apply one of the other methods
in a smaller rectangle constrained to interesting areas.

By providing a standardised interface to these contrasting systems this system will allow epi-
demiologists to investigate large data sets using a fast scan method (such as Random Circles) and
then rerun the analysis restricted to areas of interest using an exhaustive method (such as GAM).
As can be seen in Figure 1 both methods find the same clusters, but the random search is 15
times faster, but the GAM analysis is more detailed and finds more structure. Users are also able
to analyse very large data sets by connecting the back end of the processing system to a cloud
computing environment.
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(a) Random Circles (b) GAM Analysis

Figure 1: Analysis of Cancer in NE England (a)1000 Random Circles, (b)GAM (15,649 Circles)

Conclusions

This paper describes a system developed for epidemiologists to use to search large databases to
find clusters of rare diseases (such as Childhood Leukaemia). The system is made available as
open source software and is based on standards compliant OGC services. Providing the system as
open source allows it to be verified as secure to work in networked environments with confidential
data and it allows the academic rigour of the algorithmic implementations to be assessed. The
system allows the user to pull in Census data from servers that serve it via a WFS. The system can
be readily installed locally and on Grid and Cloud computing infrastructures. Results are made
available to the user using the WMS standard which allows for them to be overlaid with other data
which allows for further geographical exploration of the data which may help to explain spatial
clustering in the incidence data.
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1. Introduction  
Kernel density estimation (KDE) (Parzen 1962) which smoothes the distribution of data 
and is widely used in the field of statistical analysis. Let ݔଵ, ,ଶݔ … ,  ே denote the observedݔ
variables where ܰ represents the number of variables. The estimate value at ݔ by KDE is 
given as 

 

መ݂
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݄݊
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݄
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where ݄  denotes the extent of the impact of the variable, and ܭሺݔሻ denotes a kernel 
function. As a kernel function, a Gaussian kernel:  
 

ሻݔሺܭ ൌ
1
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݁ି

ଵ
ଶ௫

మ
 

 
is often used. 

In the field of GIS, KDE has been used to visualize the density of event points that 
occur in a plane. If a certain number of event points exist, KDE can visualize the area 
where a lot of events tend to occur without showing actual points. This is useful for 
visualizing the distribution of the event points whose privacy needs to be protected. 
Therefore, if their position is estimated from an image of KDE, it might be useful for 
researchers who need spatially precise data. For example, points are not shown in the 
Japanese criminal maps of burglary unlike other street crimes. Although, if the criminal 
occurrence points of burglary are estimated, the relationship between space and crime can 
be analyzed from more directions.  

In this study, the author formulates the problem of estimating the point position from 
an image of KDE as a nonlinear optimization problem under the condition that the 
number of event points is given. Since density distribution which is originally continuous 
will be discretized to create an image, the amount of information will lose. Moreover, 
since not only the point position but also another parameters required for defining KDE 
are unknown, this problem is more difficult than the problem estimating only the point 
position. For solving the problem, quasi-Newton methods (QN) and differential evolution 
(DE) (Strom and Price 1996) which is a relatively recent meta-heuristic are adopted as a 
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local optimizer and a global one, respectively. In the implementation, general-purpose 
computing on graphics processing units (GPGPU) that is recently showing drastic 
improvement of computational time in various fields is applied to for solving the problem 
in practical time and accuracy. Then, the proposed method is verified with sample images 
of KDE created artificially using GIS. 

2. Estimation Method 

2.1 Image preprocessing 
Various information other than density distribution such as a line segment representing 
road are often contained in a map image. In such a case, they are removed, and an image 
which contains only the density distribution is created. Furthermore, if a color image is 
provided, they are transformed to a gray-scale one. Then, a matrix data of the image is 
constructed and the brightness level of each pixel is translated to an ordinal number in 
ascending order from 0 (i.e. the density is the lowest) to ܾ݈ (i.e. the density is the highest). 

2.2 Problem setting 

Let  ∈ ܲ denote a pixel of an image, ሺݔ, ݍ , ሻ denote the x-y coordinates ofݕ ∈ ܳ 
denote an event point, and ሺݔ,  The total number .ݍ ሻ denote the estimated position ofݕ
of event points is given as |ܳ| ൌ ܰ. The estimation value of density at  derived from 
KDE with Gaussian kernel is defined as 
 

݉݇ሺሻ ൌ
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Let ݉݉ሺሻ denote the brightness level of the image at 	, and ݏ denote the scale 

parameter. Parameter ݏ adjusts linearly the estimate value ݉݇ሺሻ to the brightness level 
whose interval is ሾ0, ܾ݈ሿ. The problem estimating the point position from an image of 
KDE is reduced to find the optimal parameter minimizing the error between each pixel’s 
values of the actual image and of KDE created by the estimated position and parameters. 
This problem is defined as: 
 

minimize			݁ݎݎሺܳ, ,ݏ ݄ሻ ൌ
1
|ܲ|

൫ݏ ∙ ݉݇ሺሻ െ ݉݉ሺሻ൯
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s. t.					0  ݔ  ݔ_݉ݑ݊ െ 1 
											0  ݕ  ݕ_݉ݑ݊ െ 1 

	0 ൏  																			ݏ
0 ൏ ݄,																	 

 
where ݊ݕ_݉ݑ and ݊ݔ_݉ݑ denote the number of pixels of the image in each direction. 

2.3 Solving the problem 
Above objective function is a nonlinear continuous one but has many local optimum 
solutions. Therefore we adopt and compare two solvers: QN and DE. While there are 
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several variations in DE, we adopt the one denoted as DE/rand/1/bin/simple (called “The 
Joker”) which can find highly accurate solution in many problems (Erik et al. 2008). 

3. Implementation 
Since it takes ۽ሺ|ܲ||ܳ|ሻ time to calculate the objective function, the computational time 
increases in proportion to the increase of event points. Especially, since DE needs to 
calculate the objective function many times, reduction of the computational time is an 
important issue. Since the objective function is obtained by summing up each error of a 
pixel independently, it is easy to be parallelized. Therefore, we implement the problem in 
C++ with OpenMP for adopting a multi-core CPU, and with CUDA for adopting a 
GPGPU, and compare both computational times. 

4. Experiment 

4.1 Setting up 
25 and 50 event points were artificially generated and their KDE images with Gaussian 
kernel was created using ESRI ArcGIS 9.3. Size of the image is 148 x 112 pixels of every 
direction. The tone level of its brightness is nine. The convergence threshold of QN is 
0.001. The parameters of DE is as follows: CR (crossover rate) = 0.98, F (blending rate) 
= 0.30 (in case of 25 points) and 0.25 (in case of 50 points). The computational 
environment is as follows: CPU = Intel Core i7 960, memory = 12GB, GPGPU = 
NVIDIA TESLA C2050, OS = Windows 7 Professional (64bit), compiler = Microsoft 
Visual C++ 2008 SP1 Professional + NVIDIA Parallel NSight (CUDA 3.1). 

4.2 Comparison of the computational time between two implementations 
At first, we compare the computational time of two implementations by CPU and 
GPGPU. We set remained parameters of DE as population = 1,000 and max generation = 
10. Table 1 lists the result. The computational time by GPGPU is much faster than that by 
CPU, and we can see that the result of GPGPU is 42.2 times faster than that of CPU in 
case of 50 points. Moreover, we can see that the computational time by GPGPU does not 
almost increase even when the number of points doubles. From above observation, it can 
be said that GPGPU is very effective for implementing our estimation method. 
 

Implementation 25 points 50 points
CPU 62.5 sec. 113.9 
GPGPU 2.5 2.7 
CPU/GPGPU 25 42.2 

 
Table 1. Comparison of the computational time by DE between two implementations. 

4.3 Result of the point estimation 
Finally, the point position is estimated. QN is performed 7,500 times by changing the 
initial point position, and the best solution among them is adopted. The remained 
parameters of DE are as follows: the number of population = 5,000 (25 points) and 7,500 
(50 points); the number of generation = 50 (25 points) and 100 (50 points).  
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Table 2 lists the result. DE shows the best accuracy in both cases. Figure 1 shows the 
best estimated point position by DE. The estimated position of 25 points is close to the 
actual data. However, we can see the distinguished error of the estimated position of 50 
points. Since the tone level of the image used in the experiment is only nine, the 
information of the slope of KDE was lost so much and the position might not be 
estimated well. 
 

Solver 25 points 50 points 
QN 0.416 0.346 
DE 0.095 0.079 

 
Table 2. Comparison of ݁ݎݎሺܳ, ,ݏ ݄ሻ of the best solutions. 

 

       
(a) 25points        (b) 50 points 

Figure 1. The best estimated position of event points by DE (○: actual, ×: estimated). 
 

5. Conclusion 
In this research, the author proposed the estimation method of the position of event points 
from a gray-scale image created by KDE under the condition that the number of event 
points is given. It turned out that GPGPU improves the computational time of the 
objective function remarkably. The result by DE was quite good compared with the result 
by quasi-Newton methods. If the number of event point is 25, the estimated position was 
similar to the actual points. If the number of points increases to 50, the error became 
larger. The author wishes to try further improvement of this method to be applicable with 
even 50 or more points. Although, since it seems to be difficult to estimate the point 
position completely, the estimated position should be evaluated to contain error value. As 
a future work, the confidence area of each estimated point position should be considered. 
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1. Introduction  

Prediction of traffic variables such as flows, speeds and travel times is of vital importance 

in Intelligent Transportation Systems (ITS). To date, various parametric and non-

parametric techniques have been used, of which Vlahogianni et al (2004) provide a good 

review.  

Real time sensor networks such as those installed to collect traffic data are prone to 

missing data caused by equipment failure and other factors. In this situation, most 

prediction algorithms break down as they no longer have access to the current traffic 

patterns. Missing data are usually replaced using imputation techniques which make use 

of historic data in one of two ways. The first way involves harnessing the seasonal 

temporal autocorrelation in traffic data by using the historic data from the same time, day 

and location in previous weeks/months/years. These methods ignore the day to day 

stochastic nature of traffic. The second way involves searching the historic data for the 

most similar patterns to the recently observed data, either temporally or spatially. These 

methods rely on the assumption that all possible traffic patterns have been observed and 

that recent traffic patterns are available (Qu et al, 2009). Furthermore, if the spatial 

neighbourhood is used, they assume the presence of spatio-temporal autocorrelation (Yue 

and Yeh, 2008). Although more sophisticated techniques have been developed, in 

practice, simple algorithms such as historical average methods and exponential 

smoothing are widespread (Zhong et al, 2004). 

In this study, we make use of both the inherent seasonality in traffic data and the 

assumed spatio-temporal autocorrelation to predict unit journey times (UJT, inverse of 

speed) under missing data on a section of road in central London. Kernel regression is 

used as the prediction algorithm. The results are validated using real UJT observations 

collected using automatic number plate recognition (ANPR) cameras on a section of the 

London Congestion Analysis Project (LCAP) road network. 
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2. Methodology 

Kernel regression is a non-parametric technique simultaneously developed by Nadaraya 

(1964) and Watson (1964) that is used to estimate the conditional expectation of a 

random variable. Given a set of 𝑛 pairs of variables  𝑋1,𝑌1 ,… ,  𝑋𝑛 , 𝑌𝑛 , the goal of 

kernel regression is to estimate a regression function of 𝑌 on 𝑋 as in equation 1: 

 

𝑚 𝑥 = 𝐸(𝑌|𝑋 = 𝑥) 
(1) 

Which reads as 𝑚(𝑥) is equal to the expectation of 𝑌 given that 𝑋 equals 𝑥. Using the 

Nadaraya-Watson estimator, an estimate of 𝑚 ℎ 𝑥  can be obtained using equation 2: 

 

𝑚 ℎ 𝑥 =
 𝐾ℎ( 𝑥 − 𝑋𝑖 )𝑌𝑖

𝑛
𝑖=1

 𝐾ℎ( 𝑥 − 𝑋𝑗 )𝑛
𝑗=1

 

(2) 

Where 𝐾ℎ  is a kernel with parameter ℎ. The kernel regression estimator gives a 

weighted average of the observed independent variables 𝑌𝑖  and the denominator ensures 

that the weights sum to 1. The kernel 𝐾ℎ  is usually chosen to be a radial basis function 

(RBF) kernel with bandwidth ℎ.  

In this study, we assume that the sensor at the current link 𝑐 is not functioning and no 

data is being collected. Therefore, we must make use of the current traffic conditions on a 

neighbouring link 𝑛 to make the predictions. This is achieved by computing the similarity 

between the current and previously observed patterns on link 𝑛 and computing a 

weighted sum of the corresponding previously observed points on link 𝑐. Due to the 

seasonality in the data it is not necessary to examine all previous patterns, however; only 

searching the patterns that occurred at the same time on previous days may omit 

important information as traffic may develop differently from day to day. Therefore, a 

window 𝑤 is defined centred on the current time of day 𝑡 within which patterns are 

compared. Based on this, the UJT on the current link 𝑐 at time of day 𝑡 + 1 is predicted 

according to equation 3: 

 

𝑚 ℎ 𝑌
𝑐 𝑡+1 =

  𝐾ℎ  𝑋
𝑛
𝑡 − 𝑋𝑛

𝑖𝑗   𝑌
𝑐
𝑖𝑗

𝑑
𝑗=1

𝑤
𝑖=1

  𝐾ℎ  𝑋𝑛
𝑡 − 𝑋𝑛

𝑘𝑙  
𝑑
𝑙=1

𝑤
𝑘=1

 

(3) 

Where 𝑋𝑛
𝑡 = 𝑥𝑡 , 𝑥𝑡−1, … , , 𝑥𝑡−𝑚  is the current traffic pattern on neighbouring link 𝑛 

with temporal embedding dimension 𝑚; 𝑋𝑛
𝑖𝑗  is the corresponding traffic pattern at 

window point 𝑖 on day 𝑗; 𝑌𝑐
𝑖𝑗  is the observation recorded at current link 𝑐 corresponding 

to window point 𝑖 on day 𝑗;  𝑤 is the size of the window centred at time 𝑡 and 𝑑 is the 

number of days in the training dataset. Therefore, the estimator is computed using 𝑤 ∗ 𝑑 

pairs of training examples at each time point. 

3. Data and Experimental Procedure 

The data obtained are from the London Congestion Analysis Project (LCAP) network. 

LCAP is a system of automatic number plate recognition (ANPR) cameras maintained by 

Transport for London (TfL) that collect travel time information, aggregated at the 5 
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minute level, on London’s road network (see fig. 1). The LCAP network has very high 

levels of missing data, in some locations up to 85%, and often cameras are not 

operational for days at a time. In these circumstances, the missing data are replaced with 

historical profiles for the whole day, which cannot properly reflect the true network 

conditions. For real time applications, and also for operational reasons, it is desirable to 

obtain a more accurate estimate of the true conditions. 

The road link selected for prediction is link R425, which has a length of 925.6m. Its 

upstream and downstream neighbours are used separately to predict its future values. 

They are link R1592 (1644.4m) and R2140 (3854.7m) respectively. The data used are 33 

Tuesdays between January 6
th

 and August 18
th

 2009. The data are split into training (25 

days), testing (7 days) and prediction (1 day) sets. The training and testing datasets are 

used to determine the best values for the kernel parameter ℎ, the embedding dimension 𝑚 

and the window size 𝑤, and the parameters are then used for prediction on the prediction 

set. One step ahead predictions are made. 

 

4. Results 

Two models are constructed for comparison purposes; an historical average predictor as 

currently used by TfL, and exponential weighted moving average, which has also been 

used in practice (Zhong et al, 2004). The results are shown in table 1. The root mean 

squared error (RMSE) index is used to measure performance.  

 

Model RMSE  h(𝜃) m w 

Hist. Avg. 0.0207 - - - 

Exp. MA. 0.0203 (0.6) - - 

Upstream 0.0183 0.1 2 5 

Downstream 0.0194 0.1 2 5 

 

Table 1. Comparison of models. 

 

From the results it can be seen that the exponential moving average model 

outperforms the historical average model as it takes into account the seasonal temporal 

autocorrelation in the data. However, the improvement is small at 1.93% because it 

ignores the day to day stochastic variation. By making use of the current neighbourhood 

conditions, the kernel regression technique is able to produce results that are a further 

9.85% and 4.43% better than the exponential moving average using upstream and 

downstream links respectively. Examining figure 1, it can be seen that the kernel 

regression method is able to follow the general traffic pattern more closely, although it 

performs less well in the PM peak period. 

 

5. Conclusions and future directions 

This study has demonstrated the potential of kernel regression for predicting future traffic 

conditions on an urban road link under the hypothesis of missing data. Further validation 

is needed to test the sensitivity of the model parameters and the performance of the model 

under different scenarios such as recurrent and non-recurrent congestion. Additionally, an 
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optimal combination of the predictions made at upstream and downstream locations 

needs to be found and adaptive weighting schemes will be considered. 

 
Figure 1. Comparison of predictors. 
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1. Introduction

Delivering raw geospatial data to mobile devices is an interesting and challenging computa-
tional and user-interface problem. Geospatial data can be rendered in real-time on the mobile
device using appropriate visualisation software running on the mobile device operating sys-
tem. Currently the majority of approaches in delivering geospatial data to mobile devices
provide pre-rendered maps (tiles, images). While tile-based approaches have evolved into a
defacto standard we feel there are a number of advantages in delivering geospatial data in
raw vector formats (XML, GML, Shapefile, etc) to mobile devices including:User person-
alisation: User can choose which geographical features are displayed,change map themes,
set visualisation preferences, etc.Timeliness: The user is always provided with the most
up-to-date and recent versions of the spatial data. A numberof contraints imposed by the
mobile device environment provide major challenges including: screen resolution, available
network bandwidth, and usability issues arising from providing map visualisation on small
screens (Raper et al.; 2007). In this extended abstract we describe an implementation of a
selective progressive transmission scheme for vector data. We use OpenStreetMap (OSM)
as the case-study vector dataset. OSM data has a number of attractive features which make
it a useful case study, these including: in many areas, OSM data often changes very quickly;
OSM attempts to map a very wide range of geographical features; and is freely and openly
available. In our implementation a user requests an area of OSM data they wish to view on
their mobile device. This OSM data is downloaded immediately on the server where it is
generalised. This OSM data package is then progressively transmitted beginning with a low
level of detail version of the dataset. In an iterative process additional spatial detail is trans-
mitted to the mobile device until the full resolution dataset is delivered. Our paper provides
a brief overview of the implementation of our progressive transmission scheme. We describe
an example of selective progressive transmission for a sample OSM dataset.

2. Implementation and Discussion

In previous papers (Ying et al.; 2010b,a) we proposed a modelfor progressive transmission.
This model has been implemented in the Android platform. Figure 1 provides a flowchart of
the implementation of this model. The user selects an area from an OpenStreetMap (OSM)
slippy map on their mobile device. The Android client application sends a request to our
server system. The OSM-XML data corresponding to the area requested is downloaded
immediately from OpenStreetMap.org using the OSM API. For improved performance the
OSM-XML is processed using data streaming. A Java-based implementation was written
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for the OSM-XML processing and subsequent generalization of the spatial data. We use two
generalization approaches. The well-known Douglas Peucker algorithm is used for poly-
line simplification. For polygons it is very important to preserve shape/contour attributes
for rendering on the small screen of a mobile device (Setlur et al.; 2010). We employ a
very well known method from the domain of computer vision which preserves the shape of
a contour across levels of detail. The method by Latecki and Lakamper (2000) is a con-
tour preserving approach to generalization of polygons. Some OSM polygons and polylines
are greatly under-represented while others are very well represented with many hundreds of
nodes (Mooney et al.; 2010). Consequently some of the features in the input dataset are more
heavily generalized than others. Figure 2 outlines the datastructure used to maintain the or-
dering of nodes from the geographic features which undergo generalization. For a given
nodeni a number of characteristics are maintained in the data structure including: the nodes
nj andnk which are connected toni in the polygonP or polylineL; the significanceKSi to
the overall polygon which is calculated from the angle atni and length of this node’s incom-
ing and outgoing edges (from (Latecki and Lakamper; 2000));the order or position where
ni was removed during the generalization process is used by theprogressive transmission to
progressively rebuild the polygon or polyline.

Figure 1:A schematic diagram illustrating the software implementation of our progressive transmis-
sion model

Figure 3 shows screenshots from the Android device of an example of progressive trans-
mission (top row of images) and selective progressive transmission (bottom row of images)
applied to a sample OSM dataset. The left-most column shows the progressive transmission
process when only20% of the original nodes are present in the input dataset. Subsequent
columns show40%, 60%, 80%, and finally the right-most column shows the full resolution
(100%) dataset. Two polygons are coloured in blue. The large polygon is NPa and the
smaller polygon isNPb. In the progressive transmission example nodes are added inthe
reverse to how they were removed during generalization. Themost significant nodes are
added to the transmitted dataset first. Only close to the end of the progressive transmission
are the nodes with very low overall significance transmitted. The problem with this approach
is that shapes with small area (relative to other shapes in the map) containing a large number
of nodes are only provided with additional spatial detail close to the end of the progressive
transmission. In a selective transmission scheme (bottom row of images in Figure 3) the area
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Figure 2:A schematic diagram of the indexed data structured used to maintain the ordering of nodes
from the geographic features after generalization

of each polygon shape in the map is used as the selection criteria. Regardless of the signif-
icance of nodes the larger shapes in the map recieve additional spatial detail before smaller
shapes. This could help reduce the cognitive load on users asthe larger shapes are more vis-
ible on small screen displays (Burigat and Chittaro; 2008).A number of different selection
criteria could be used to drive the selective progressive transmission process. These include:
measures of circularity or rectangularity of the shapes, area ratio (normalised ratio of differ-
ence between area of the polygon and its convex hull), shape complexity based on convexity
of shapes (Brinkhoff et al.; 1993), map clutter indicators (Harrie and Stigmar; 2010), etc.

3. Conclusions and Future Work

With the gradual move of cartography from paper maps to web and mobile maps the re-
quirement for real-time cartography has come into play (Yang and Weibel; 2009). We have
described the implementation of a model for selective progressive transmission of vector
data over the Internet to mobile devices. In this phase of ourresearch we have used the area
of the polygon shapes in the map as a shape metric to guide the selective transmission after
the generalisation of the data on the server side. Using different shape metrics will affect
how the spatial data is transmitted to the client device. To quantify which shape metrics
work best for delivery of raw spatial data, such as OpenStreetMap, to mobile devices we are
carrying out extensive user trials. During these trials with the Android-based mobile device
we are collecting large quantities of additional information including zooming and panning
behaviour of users as the map display progressively becomesmore detailed and click/point
interaction from the user with the map display. The long-term goal of this research is to
develop a robust model for the smooth and seamless delivery of large quantities of raw vec-
tor data (in our case OSM data) to mobile devices. Progressive transmission strategies will
become more important going forward resulting from the increased requirement of spatial
content and the ubiquitous nature of mobile devices. The commercial aspect of this research
is summarised by Khurri and Luukkainen (2009) who comment that to continue innovation
in mapping services and user-generated content for Location-based Services map vendors
will only gain competitive advantage by providing “up-to-date maps as a primary precondi-
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Figure 3:An example of progressive transmission (top row) and selective progressive transmission
(bottom row). In the progressive transmission example detail (nodes) are added in revese to the order
they were removed while in the selective case larger shapes recieve detail early in the transmission.
NPa is the large blue polygon whileNPb is the small blue polygon

tion for supplying accurate, timely and relevant content toLBS consumers”.
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1. Introduction 

Digital terrain analysis (DTA) is widely used in hydrological, pedological, and 
geomorphological applications (Wilson and Gallant 2000). DTA in practical 
application is typically a modelling process of organizing different DTA tasks into a 
workflow with specific structure (e.g., chain, network). Construction of a proper DTA 
workflow is related to many aspects of knowledge in DTA domain, such as those of 
assigning the DTA tasks, selecting the specific algorithm for every task, setting the 
data flow between DTA tasks, setting parameter(s) of a given algorithm, and ensuring 
the match between algorithms and the specific application. This is a non-trivial 
process for users, especially for those not being familiar with DTA. 

Current DTA-assisted software provides very limited support on the process of 
modelling DTA workflow. The software includes both software/toolboxes focusing 
mainly on DTA (e.g. TauDEM (Tarboton 1997), TAS (Lindsay 2005)) and common 
GIS (e.g. SAGA1, GRASS2) which have functions of DTA. The functions of DTA in 
the software are often provided with a traditional menu-based style. So user must 
know the details on the workflow in advance and must manually set and run every 

                                                        
1 www.saga-gis.uni-goettingen.de 
2 grass.itc.it 
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task in the workflow step-by-step. Recently, visualized modelling environment has 
been used to facilitate the geoscientific modelling process by a codeless visual means 
(Takatuska and Gahegan 2002; Watson and Rahman 2004; Gregersen et al. 2007). An 
example related to DTA is the ModelBuilder tool in the recent version of ArcGIS3. 
However, users still have to manually locate every task in the workflow step-by-step 
based only on user-owning knowledge in DTA domain. This limits the efficiency and 
even quality of modelling DTA workflow. 

In fact, many of the knowledge in DTA domain (such as the organization among 
tasks, the data flow among them, selection of algorithm for a specific task, etc.) could 
be formalized in advance and then enable the non-expert users to model DTA 
workflow in a much easier way. The similar idea has been implemented in the 
automatic modelling tools recently emerged in semantic web and geospatial web 
services (Lutz et al. 2007; Yue et al. 2007) so as to facilitate the automatic discovery, 
access, and chaining of geospatial web services. However, existing automatic 
modelling tools often lack a visualized environment and rely on both web services 
and huge knowledge base (e.g. SWEET Ontologies4).  

By combining the formalized DTA knowledge with visualized modelling 
environment, a heuristic interaction modelling environment could be implemented to 
support effectively on the modelling process of user-specific DTA workflow. 
Currently there is few DTA-focused implementation of this idea. This abstract 
presents a preliminary work on a light-weighted, offline software prototyping of a 
heuristic and visualized modelling environment for DTA (named as SimDTA 
VisModeler). 

2. Software Prototyping of SimDTA VisModeler 

2.1 Design 
SimDTA VisModeler is conceptually designed to consist of three bases and four 
modules (fig. 1). Three bases (i.e. knowledge base, model base, and database) storage 
the formalized DTA knowledge, tasks/algorithms, and input/output data, respectively. 
The knowledge base supports the ability of heuristic modelling. 

Four modules designed in SimDTA VisModeler are described below. 
Visualized Modelling Module. This module has a graphical user interface (GUI) 

which has a catalog of available DTA tasks and a canvas. The canvas shows the view 
picture of the user-specific DTA workflow formalized, including the selected DTA 
tasks, the data-flow between tasks, and the organization of them (fig. 2a). This 
module supports the visualized modelling at three levels: task-level, algorithm-level, 
and execution-level. The task-level modelling means the interactive, visualized 
formalization of the user-specific DTA workflow. When a task is requested by user in 
a way of dragging the task icon into the canvas, objects drawn immediately on canvas 
are not only the task icon but also the related input/output data icons and the 

                                                        
3 www.esri.com 
4 http://sweet.jpl.nasa.gov/ 
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unidirectional links (from each input to task, also from task to each output) (fig. 2a). 
The algorithm-level modelling permits user to change the default settings about 
specific algorithm and its parameter(s) for each given task in a dialog-box activated 
from the corresponding task icon on canvas. The execution-level modelling is to 
specify input/output data for executing the workflow. 
 

Submitting & Executing Module

Database

Search Feedback

Knowledge Base

Task knowledge

Algorithm & parameter-setting 
knowledge

Matching knowledge

Model Base

Task library

Algorithm & parameter library

Heuristic Modeling Module

Inference engine

Model-checking engine

Visualized Modeling Module (GUI)

Canvas tools for modeling

Algorithm & parameter setting 
tools

Symbol library for visualized 
modeling

Feedback

Query

Model executing tool

Model submitting tool

Search Feedback

Update

Update

Submit

OutputInputLoad

Model-checking tools

Knowledge Editing Module (GUI)

Editing tools for task knowledge

Editing tools for
algorithm & parameter knowledge

Knowledge-checking tools

Search FeedbackFeedback

 
Figure 1. Framework of SimDTA VisModeler 

 
Heuristic Modelling Module. With a inference engine inside this module it can be 

automatically determined to add a specific task into the current workflow in order to 
prepare a necessary, but not ready-made input data (fig. 2b, 2c). Thus, the workflow 
shown in the visualized modelling module can be interactively expanded from a 
user’s initial target task to a complete DTA workflow in which all input data are ready 
for execution. Such modelling process of automated tracing from the last step to the 
first step is more natural for the non-expert user than the traditional modelling process 
of user-defining from the first step to the last step in existing DTA-assisted software. 
We call this feature of SimDTA VisModeler “heuristic modelling”. 

Submitting & Executing Module. This module can save the user-specific DTA 
workflow into the model base and execute it, after the workflow is built and passed 
the model-checking in the visualized modelling module. 

Knowledge-Editing Module. This module has a GUI by which the knowledge base 
can be interactively updated. This module is independent to other modules. 
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 a)  b)

 c)  d)
Figure 2. Modelling with SimDTA VisModeler. a) Drag a task to canvas (Question 
mark attached to the data-icon means that the data source is not specified yet); b) 

Interaction on whether the current workflow should be extended; c) A task is 
automatically added; d) A complete workflow for calculating TWI. 

 

2.2 Preliminary implementation 
SimDTA VisModeler is developed with Microsoft .NET 4.0 libraries. The 
visualization is developed based on .NET GUI library. The model executing tool is 
implemented by .NET reflection mechanism.  

Currently the DTA knowledge is stored in XML 5  files. The independent 
knowledge-editing module is under development. 

3. Application 

A simple case of modelling and executing of the calculation of topographic wetness 
index (TWI), one of the most important topographic attributes, is used to illustrate the 
availability of SimDTA VisModeler. If a user need calculation of TWI, not only a 
TWI algorithm but also the input data (two topographic attributes, i.e. slope gradient 
                                                        
5 http://www.w3.org/XML/ 
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and specific contributing area) for the TWI algorithm are necessary for this 
TWI-calculating task (Hengl and Reuter 2008). As soon as the user drags the TWI 
task into the canvas, these requirements will be visualized (fig. 2a) and a specific TWI 
algorithm with default parameter settings will be chosen as default algorithm based on 
existing research on this algorithm. If the necessary input data is available, the 
modelling process could be ended with assigning input/output file names by user. Or 
else, additional tasks of calculating slope gradient and specific contributing area 
would be added in the user’s DTA workflow (fig. 2b, 2c). The remaining process of 
modelling user’s TWI-calculating workflow will be the analogy of the above process 
until all input data have been ready for execution (fig. 2d). 

4. Conclusions 

By the heuristic and visualized modelling environment proposed in this abstract, a 
non-expert user can handily construct a complete DTA workflow from his initial 
target task, even if the user has little knowledge on DTA tasks/algorithms or the 
relationship between them. 
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1. Extended abstract 

Spatial turnover, the rate of change of a phenomenon or process with distance, is an 

important component of many research fields.  Examples include species turnover (of 

which beta diversity is a specific type; Tuomisto, 2010), environmental gradients such as 

rainfall, income classes by census districts, language groups (Jones & Laffan, 2008), and 

pedodiversity.  It forms the basis of simple correlogram plots and analytical methods such 

as Generalised Dissimilarity Modelling (Rosauer et al., 2009a; Ferrier et al., 2007) where 

one relates the turnover of species composition to the changes in environmental 

phenomena. 

Turnover for continuous fields such as elevation or climatic variables are merely the 

gradients between pairs of locations, and can be easily inferred from displays of 

geographic layers in a GIS (e.g. Figure 1).  However, the visualisation of turnover 

becomes more difficult for cases where one is investigating the turnover of collections of 

objects that overlap in geographic or other spaces.  An important example of this is 

species diversity, where one is interested in the rate of change of species composition 

with increasing geographic distance and direction, as opposed to the rate of change of the 

absolute number of species.  In such cases the composition cannot be directly displayed 

or stored as a single surface, making such an approach appropriate. 

For compositional turnover one must use a matrix of turnover values, where the n 

rows and columns represent the set of locations used, and each of the values vij represents 

the turnover between the pair of locations represented by row i and column j.  The 

visualisation of turnover matrices can be extremely complex because, for each location in 

an n×n matrix, there will be n-1 possible values that could be plotted and each of these 

relates to a different location in the data set.  One approach is to plot lines radiating from 

each location i to each neighbour j, symbolised by their relative values.  However, such a 

diagram rapidly becomes cluttered as n increases.  Subsetting by dominant directions is 

possible, but could exclude multi-modal relationships, and subsetting to distance classes 

can result in interpreters missing insights where relationships span distance classes. 
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Figure 1.  Species richness of Acacia species across Australia at a 1 degree resolution.  

The rate of change of richness is easy to infer, but not the relative changes in species 

composition.  Data are derived from Laffan and Crisp (2003). 

 

The simplest solution to the visualisation problem in this case is to subdivide the 

matrix into n geographic layers and plot each one separately.  This process is 

comparatively simple to implement as a post-hoc process where each layer is extracted 

and plotted in sequence.  However, an interactive approach is far more user-friendly, and 

working directly from the matrix is more computationally efficient.  Such an approach 

has been implemented as an extension to the Biodiverse software (Laffan et al., 2010; 

http://www.purl.org/biodiverse).  In this system a matrix is calculated and then displayed 

for one index location, with the remaining locations plotted using their turnover values 

relative to the index location.  When the user clicks on a new location it is set as the index 

location, and the display is updated to show the turnover from that location to all other 

locations using values extracted dynamically from the matrix.  An example plot of four 

locations this is given in Figure 2, where one can observe the rate of change of Acacia 

species composition at a one degree resolution across Australia for a west to east transect 

through central Australia.  Of particular note is that one can easily visualise for each 

location the spatial scale, anisotropy and non-stationarity that underlie analyses that use 

aggregate measures of turnover. 

A further advantage of using Biodiverse is that one can analyse any one of the more 

than 150 currently supported scalar indices, so one can assess more than simply species 

turnover, for example species endemism (Laffan & Crisp, 2003), phylogenetic endemism 

(Rosauer et al., 2009b), phylogenetic turnover, trait data, continuous fields, and the like.  

Biodiverse has been developed for complex spatial analyses, so one can also construct 

spatially constrained matrices such that the sets of neighbours considered for each 
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location can be restricted to a set radius around each location, or within a biome, or some 

other arbitrarily complex spatial condition. 
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Figure 2.  Spatial turnover plots for four cells along a west-east transect for Acacia 

species in Australia.  Turnover is measured using the Sorenson dissimilarity metric.  

Index cells are denoted in grey.  The colour scale progresses from cyan (most similar) to 

red (most dissimilar).  Data are derived from Laffan and Crisp (2003). 
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1 Abstract

For the safe and continued operation of a railway environment, it is impor-
tant railway assets such as signals, signs and level crossings are clearly visible
to train drivers. Safety guidelines stipulate drivers’ view of assets must be
unobstructed for eight seconds upon approach (Railway Group Standards
[2003]). Even if assets are clearly visible from prescribed distances at the
point of initial construction, the environment in which they exist is dynamic.
Thus the environment around an asset can change (e.g. vegetation can grow)
which can cause unwanted asset line-of-sight (LoS) obstructions. Therefore,
asset LoS must be regularly checked. Traditional methods for performing
these checks either involve manual trackside labour (US Army Corps of En-
gineers [2007]) which present safety concerns with regard to personnel on
the track or expensive laser scanning equipment (FLI-MAP [2010]). In this
work, we present a system which creates a three-dimensional model of the
environment surrounding an asset using monocular video data captured from
a train mounted video camera.

Once this terrain model has been created, it must be analysed with regard
to LoS between asset position and possible driver positions. Traditional
methods of LoS analysis provide information regrading the inter-visibility of
points within a terrain map and focus on reducing the computational load
of such tasks (Salomon et al. [2004], Washtell et al. [2009], Duvenhage [2009]

1
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and Y. Xia and Shi [2010]). Whilst this information is useful, it is important
in the presented application to provide analysis of terrain, indicating which
parts of the terrain cause dangerous LoS obstructions now or in the future.
Hence, we present a novel metric to provide simultaneous LoS and terrain
analysis for segmented terrain elements from the generated model. This
metric combines information regarding the closest driver position which can
be obstructed, using the smallest amount of modelled terrain growth.

The minimum obstructing distance of a terrain element is defined as the
closest distance of all the observation points obscured by the terrain element:

MOD(T ) = min(D(asset, obsi),∀i ∈ OBS (1)

where OBSTRUCT (T, obsi) = true)

where, T is the terrain element under consideration, OBS is the set of all
observation points, D(asset, obsi) returns the distance between the asset and
observation points (asset and obsi respectively) and OBSTRUCT (T, obsi)
returns true if the terrain element obstructs obsi, otherwise it returns false.
This concept is demonstrated in Figure 1.

Asset

Closest obstructed
observation point

Minimum obstructing

distance

Figure 1: Minimum obstructing distance of a terrain element.

For any set of terrain elements, the lower this minimum obstructing dis-
tance is, the more important the associated terrain element is with regard to

2
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asset LoS. Consider the example shown in Figure 2. Clearly, terrain element
A should be removed before terrain element B, as the minimum obstructing
distance is much closer for A. This concept also extends to groups of ter-
rain elements which appear together. This is shown in the (albeit) simple
example of Figure 3. The terrain element marked 1 has the lowest minimum
obstructing distance and has the greatest impact on asset LoS. For example,
even if all other terrain elements are removed, the asset LoS will still be
blocked by terrain element 1.

Asset

A

B

Closest observation
point blocked by A

Closest observation
point blocked by B

Figure 2: Comparing minimum obstructing distance.

Figure 3: Minimum obstructing distance in terrain groups.

Not all terrain elements will obscure observation points and hence will
have no associated minimum obstruction distance. However, it is possible
to compute what the minimum obstruction distance would be in the future.

3
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This growth is computed as the minimum distance between the terrain el-
ement and the set of lines created between the asset point and observation
points:

GROWTH(T ) = min(DLINE(T,
−−−−−−−→
AssetObsi),∀i ∈ OBS) (2)

where, DLINE(T,
−−−−−−−→
AssetObsi) returns the distance between terrain element

T and the line created by the asset point (Asset) and the current observation
point under consideration (Obsi) and OBS is the set of all observation points.
This concept is shown in Figure 4, where the terrain element (white rectangle)
would require to grow horizontally the distance demonstrated by Growth to
block LoS from the observation point (grey circle). The minimum obstructing
distance is then the distance from the asset associated with this blocked
observation point.

Asset

Growth

Minimum
obstructing
distance

Figure 4: Terrain element growth and minimum obstructing distance.

The lower this growth value, the more important the corresponding ter-
rain element with respect to asset LoS. This is highlighted in Figure 5 where
terrain element 3 is the most important as it requires the least amount of
growth to intersect with the LoS between the asset and an observation point.

Computing the minimum obstruction distance and terrain growth for each
terrain element, it is possible to produce a ranking. This ranking sorts the
elements so that those which cause the closest obstruction, the soonest are
ranked higher. This is achieved by sorting terrain elements into ascending
order in terms of computed values of growth and the minimum obstruction
distance. Such an example is shown in Figure 6 and Table 1, the numbers
represent the ranking of the terrain element - lower means the terrain element
is more important.

4
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Figure 5: Terrain element growth example.

Figure 6: Terrain ranking example

However, the calculation of this metric for a given terrain model can
be computationally expensive. Following the lead from previous literature,
we therefore present a further novelty for decreasing computation associ-
ated with our proposed metric. The main idea behind this reduction divides
single (expensive) three-dimensional based computations into a series of two-
dimensional problems, each of which can be solved using binary search tech-
niques. Several different such techniques are compared in this work. The
best performing of these utilises an Adelson-Velskii and Landis (AVL) bal-
anced binary tree and persistent AVL tree pair, decreasing computation to
18% of an exhaustive method whilst producing results which are 99.8% the
same.

The core output of this work is generated reports presenting the terrain
and line-of-sight analysis for use by railway engineers to perform maintenance

5
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Terrain MOD Growth Rank
A b - 1
B d - 2
C k 1.5 5
D k 2.5 7
E k 3.0 8
F k 4.5 9
G k - 4
H j - 3
I k 2.0 6

Table 1: Terrain ranking data for Figure 6.

(or preventative maintenance) with regard to the terrain surrounding an
asset, to help improve asset line-of-sight. The following presents example
results used in the construction of such a report. Figure 7 shows an asset
and some of the image frames from the video sequence preceding this location.
Figure 8 shows line-of-sight and terrain analysis results for this sequence, in
a top-down view of the corresponding terrain model.
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(a) Example signal asset. (b) Surrounding terrain.

(c) Surrounding terrain. (d) Surrounding terrain.

Figure 7: Example asset (the signal to the left-hand side of the track) and
image frames containing the surrounding terrain.

- Control and Topographic Surveying, January 2007. URL
http://140.194.76.129/publications/eng-manuals/em1110-1-1005/c-8.pdf.
Last accessed: 24th December.

J. Washtell, S. Carver, and K. Arrell. A viewshed based classification of
landscapes using geomorphometrics. In Proceedings of Geomorphometry,
pages 44–49, 2009.

Y. Li Y. Xia and X. Shi. Parallel viewshed analysis on gpu using cuda.
In Third International Joint Conference on Computational Science and
Optimization, pages 373–374, 2010.

7

GeoComputation 2011

305

Session 6B: GeoVisual & Terrain Analysis

uceswji
Text Box
        



Asset location

- red points = position from
which asset can be seen

- blue points = position from
which asset cannot be seen

- blue rectangles = trackside
terrain slices

Asset sighting distance
= 133.87 metres

(a) Example asset line-of-sight profile presented in a top-down
view of the track. Asset sighting distance refers to the distance
from which an unobstructed view of the asset is provided upto
the location of the asset.

Asset

(b) Terrain analysis with respects to asset line-of-sight, the trackside terrain elements
are coloured according to effect on asset LoS - white means the terrain element has more
effect on asset line-of-sight, black means less.

Figure 8: Example output providing analysis of asset and terrain line-of-
sight.
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Model Selection in GWR: the Development of a 
Flexible Bandwidth GWR
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1. Introduction
Model selection is a key issue in geographically weighted regression (GWR; 
Fotheringham et al. 2002). This not only includes the selection of a variable subset, 
the bandwidth size, the type of kernel, but also the form of the GWR model itself.  In 
this study, we investigate this issue with respect to basic GWR and semi-parametric or 
mixed GWR (MGWR; Brunsdon et al. 1999; Fotheringham et al. 2002; Mei et al. 
2004), where for the latter, some relationships are modelled as stationary across space, 
whilst others are not. However, this mixed model can be seen as a special case of a 
more general model, where different bandwidths are defined for different independent 
variables. This flexible bandwidth GWR (FBGWR) model should not only allow an
extremely useful exploratory investigation of data relationships that may vary at
different spatial scales, but it is hypothesised that its results may guide model 
selection with more parsimonious GWR and MGWR fits.  

2. Model selection
A multiple linear regression (MLR) model describes stationary relationships between 
dependent and independent variables throughout the study area. When relationships 
vary over space, a GWR model is preferred, which allows parameters to be estimated 
locally. In this study, a stepwise Akaike Information Criterion (AIC) method is used
for variable subset selection with MLR, whereas for GWR, an approximate stepwise 
AIC procedure is employed. Model selection with MGWR involves not only whether 
or not to include a variable, but also whether it should vary spatially. There are two 
practical methods to help this decision; one uses AIC, the other uses a Monte Carlo
test with the basic GWR model.  The Monte Carlo test evaluates the variability of a 
local parameter estimate of a given variable; if it varies significantly across space, 
then this variable should be a geographically varying term, otherwise, it should be a 
fixed term in the ensuing MGWR fit.

3. Case study data
We highlight model selection issues using a dataset of the Irish Famine, where
relationships between population decline and thirteen demographic, locational and 
land use characteristics (see table 1) are investigated (Fotheringham et al. 2010). The 
dataset consists of 3,250 Electoral Divisions (EDs) and were derived from the 1841 
and 1851 Population and Agricultural Censuses. To reduce computational complexity
with MGWR (and FBGWR), whilst at the same time preserving the pattern of 
relationships across the country, a stratified sample containing 446 EDs is drawn to 
act as our study dataset. Datasets are shown in fig. 1.
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Figure 1. Full (left) and sample (right) datasets.

4. Analysis
The many paths for model selection with GWR and MGWR are depicted in fig. 2. 
Starting from a full set of independent variables (leftmost path), we can fit a basic 
GWR model using all variables and then find two competing MGWR models via an
AIC or Monte Carlo approach. Alternatively (the middle path), we use AIC with 
GWR to find a reduced set of independent variables and then find a further two 
MGWR models via AIC or Monte Carlo.  This provides four possible MGWR fits,
which are then doubled to eight, if we start from a reduced set of variables, resulting
from a stepwise MLR fit (rightmost path).

There is no one best path: for example if we follow the path on the far right, we 
may exclude variables that only have locally significant coefficients. If, as an 
example, we focus on the results from the four MGWR paths shown in fig. 2, we are 
presented with clear inconsistencies (see table 1). 
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Figure 2. Paths for model selection.

Furthermore, if we focus on MGWR1 and MGWR2, more mixed models can 
result.  For example, using the AIC approach MGWR1 results in a first pass 
suggesting that the parameters for PopCrop_41 and Potat_Cult have no significant 
spatial variability (call this MGWR1-1).  Then if we conduct a further AIC-based 
selection with MGWR1-1, a new mixed model (MGWR1-2) can be found which 
suggests that the parameter of Perc_Town also has no significant spatial variability
(i.e. three variables should be fixed). Alternatively, the Monte Carlo route via basic 
GWR indicates that Perc_Town and lnWHOUSE should be the fixed terms (i.e. the 
MGWR2 model). This model can also be specified with different bandwidths: 
MGWR2-1 selects its bandwidth through AIC minimisation; MGWR2-2 employs the 
same bandwidth as GWR1; while MGWR2-3 employs the bandwidth of MGWR1-1.

Performances of the five MGWR models are compared in table 2, along with the
corresponding basic GWR (GWR1) and MLR models. MLR is the poorest performer, 
whilst according to AIC, MGWR1-2 performs the best. The three MGWR models 
built on the Monte Carlo test, perform no better than basic GWR.
As an example, the local parameter estimate surfaces of VALUATION are compared
in fig. 3.  Here, only the parameter estimates that are significantly different from zero 
(indicated by a t-value in excess of ±1.96) are displayed. As a comparison, the global 
parameter estimate is 0.0015, with a t-value of 5.52, suggesting a positive relationship 
between population decline and land value. Here, a positive relationship means
population decline was more severe in areas where the corresponding variables had 
lower values. A negative relationship has the opposite meaning. GWR1 detects some 
areas with significant negative effects in the middle of the country which does not 
happen with the mixed models. Among the mixed models, MGWR1-2 reveals the 
most variation of parameter estimates, while MGWR1-1 masks the areas with 
significant effects in the north-west of the country.
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  Model
Variable    

MGWR1 MGWR2 MGWR3 MGWR4

(Intercept) Varying Varying Varying Varying
VALUATION
(land value per hectare)

Varying Varying Varying Fixed

Coast_Dist
(distance to coast)

Varying Varying Varying Varying

Perc_Towns
(percentage of population in towns)

Varying Fixed Fixed Fixed

ACC41_20
(accessibility to urban areas)

Varying Varying Varying Varying

lnWHOUSE
(ln proximity to workhouses)

Varying Fixed Varying Fixed

PopCrop_41
(population per acre of cropped 
land)

Fixed Varying Varying Fixed

Potat_Cult
(percentage of cropped land under 
potatoes)

Fixed Varying Fixed Varying

UNINHABPCT
(percentage of uninhabited 
dwellings)

- - Fixed Fixed

lnPPB
(ln persons per building)

- - Varying Fixed

PCorn_Cult
(percentage of cropped land under 
grain)

- - Varying Fixed

Ratio1841
(male/female population ratio)

- - Varying Fixed

Crops_Hold
(average holding size)

- - Varying Varying

MEAN_ELEV
(mean elevation)

- - Fixed Fixed

Optimal adaptive bandwidth 72 107 172 118
Table 1. Model selection results from different path.

MLR GWR-1 MGWR1-1 MGWR1-2 MGWR2-1 MGWR2-2 MGWR2-3

AIC       3383.44 3240.38 3233.64 3229.29 3281.13 3283.78 3301.50
BIC       3419.93 3547.68 3528.66 3483.85 3492.80 3530.59 3595.54
R square       0.18 0.61 0.61 0.58 0.49 0.52 0.54
Adjusted 
R square      0.17 0.49 0.49 0.48 0.40 0.41 0.41
Bandwidth 89 72 72 107 89 72

←Based on AIC comparison→←         Based on Monte Carlo test           →

←  MLR →      ← GWR→ ←                                             Mixed GWR                                                  →

Table 2. Performances of different models (AIC is actually AIC corrected)
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GWR-1 MGWR-1-1 MGWR-1-2

MGWR-2-1 MGWR-2-2 MGWR-2-3

Figure 3. Parameter estimates for VALUATION from GWR and MGWR models.
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5. FBGWR
Our results indicate clear problems in selecting a GWR model, whether in basic or
mixed form.  It is proposed that the results from a FBGWR model may aid model 
selection in these simpler models, of which FBGWR is a generalisation.  On 
calibrating a FBGWR model, variables that have relatively large bandwidths would 
suggest that these should be fixed in a mixed model, whilst possibly, variables that 
have very small bandwidths should be omitted altogether.  

Ideally, a fully developed and proven FBGWR model should enable a full
investigation of data relationships that vary at different spatial scales.  However such 
a model is inherently complex and its calibration is likely to present a significant 
computational burden.  In this respect and as a first step in the development of 
FBGWR, we present an approximate form of this model using back-fitting and we use 
this model as a diagnostic tool for the simpler GWR models described. The details 
and validity (including its accuracy) of this model will be expanded upon in due 
course.
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1. Introduction 
This study aims at introducing a new approach for sustainable spatial planning, where the point of 
departure is not current data, but a future desired by stakeholders. To this end, we propose an inverse 
modeling approach where the result is a set of values for parameters identified as being key to reach a 
desired future. The goal of the preliminary assessment is to show, what kind of planning questions can 
be answered using the approach, e.g. (i) given the current state-of-the-art of modeling future spatial 
states, are the spatial developments desired by the stakeholders reachable?, (ii)  where should the 
desired development take place?, and (iii) what are the trade-offs between the different solutions? We 
discuss advantages and shortcomings of the approach for planners and conclude about the 
effectiveness of the approach as a means of encouraging lay people and stakeholders to get involved 
efficiently in sustainable spatial development issues.  
 
2. The inverse approach 
Solving an inverse problem is not solving a mathematical exercise, but solving a problem coming 
from a scientific model. The phenomenon that relates the parameters to the observations can be 
represented by an operation G linking the space of observations d with the space of parameters m.  
While the set of parameters is usually called the model space (m), the set of observed data is called 
the data space (d). Aster et al. (2005) describe an inverse problem as shown in Equation 1: 
 
 
 
 
 
where d may be a function of time and/or space or a collection of discrete observations. G(mtrue) a 
“perfect” experiment and ε a noise component. dtrue exactly satisfies for m equal to the true model, 
mtrue, if we assume that the forward model is exact, ε can often be neglected as it often has little or no 
correspondence to mtrue.The goal of inverse modeling is to search a solution such that G(mtrue ) 
becomes close to d. Thus, we make inferences about the parameters from the set of observed data thus 
fitting the model to the data.  
 
 
3. The case study: Planning for new dwellings in metropolitan   area 
 
3.1 The model and the study area 
The metropolitan area of Zurich (Switzerland) is one of the Europe’s economically strongest area and 
Switzerland’s economic centre. As a hot spot of living, working, and commuting, the metropolitan 
area of Zurich is characterized by high density and high development dynamic. We illustrate how 
inverse modeling can support decision-makers for identifying urban development options in the 
canton Zurich. Given a desired house price level, we show how one can determine what are the 
relevant trade-offs between locational, structural, and socioeconomic characteristics of new dwellings 
given a certain price. 

(1) ε)m(Gd true +=
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 Our forward model is based on a hedonic house price model employed by Loechl and Axhausen 
(2009). The underlying data for the model were taken from a webpage including rent offers from 
various Swiss real estate online platforms between December 2004 and October 2005. The addresses 
for all dwelling units in the dataset were geocoded at building level and matched with a wide set of 
spatial variables. Overall, rent prices are regressed against a set of structural, locational and 
socioeconomic explanatory variables. The forward problem can be solved by Ordinary Least Square 
(OLS) by which beta parameters are estimated and the expected value of rents can be estimated for a 
given set of explanatory variables. Conversely, in the inverse problem, a set of explanatory variables 
are to be found for a desired house price level and a given set of beta parameter estimates. For 
example, a desired house price level may be selected so as to compensate the economic loss caused by 
variables which are generally negatively related to house prices, such as: air noise level, population 
density, and proportion of foreigners. Figure 1 illustrates the forward and the inverse model 
framework for the hedonic house price model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
3.2. Methodology: a mixed-GWR approach 
As we intend to explore how compensation scheme between the different variables differ across 
space, we used a local regression analysis as the forward model. However, it may occur that some 
explanatory variables do not exhibit sufficient local variability, yielding misleading local parameter 
estimates associated with such variables. For this reason, we perform a mixed geographically 
weighted regression (GWR) model (Fotheringham et al. 2002) which allows some parameters to vary 
over space while others remain fixed. The selection of which variable will be globally or locally 
considered in the model can be done simply by analyzing the variability of the explanatory variables 
over space as well as the sign and t-values of the local estimates from GWR. 
 
 The functional for of the model is represented in Equation 2:  

 

 

Figure 1. Framework illustrating the link between the forward and the 
inverse modeling approach. 
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where P is a vector of the monthly rents prices Xa and Xb are the matrices of explanatory variables 
associated with global and local coefficients respectively, βa is a vector of global coefficients (without 
including the intercept term), βb is a matrix of location-specific coefficients (including the intercept 
term), and ε is a vector of residuals assumed to be random and spatially uncorrelated.  

 
 The next step is to invert our model in order to determine the values of chosen explanatory 
variables for a given rent value. As stated above, our intention is to explore the compensation scheme 
over space, thus we invert Equation 2 so as to solve the model for the Xb matrix as shown in Equation 
3, where Pd denotes a “desired price” for which Xb is to be solved. Following the notation used in 
Equation 1, we express our inverse problem as:     

 

 

 where aβ̂ and bβ̂ are the mixed-GWR estimates associated with global al local coefficients 
respectively.  

3.3 The air noise problem  
It is generally argued that the locational variable air noise is negatively correlated to house prices. In 
our model, we use a global dummy variable denoted by AIRNOISE which is equal to 1 if the air noise 
level is above 52 dB and 0 otherwise. The value of the AIRNOISE parameter estimate is -85.02 
[CFH] which represents the extent to which monthly rent prices drop as a result of high level of air 
noise in the area. Figure 2 shows the locations where the air noise level exceeds the 52 dB (referred to 
as noisy locations) coupled with the spatial distribution of the sampled data.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

εβXβXP bbaa ++=

bbaa
d1- X)β̂,β̂,X,(PG =

(2) 

(3) 

Figure 2. Noisy locations and sampled data. 
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As a way to demonstrate how our inverse approach operates, we solve Equation 3 for a local 
variable used in the hedonic house price model which we denote by CARTT_CBD (employed in a 
logarithmic form in the model) and which measures the average travel time to the Zurich CBD by car 
in minutes. In other words, our motivation is to find out the extent to which the CART_CBD has to be 
reduced to compensate the economic loss caused by the air noise (85 CHF monthly). To explore how 
the compensation scheme varies across the existing noisy locations, we define three clusters from the 
existing noisy locations, as shown in Figure 3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 4 exhibits the results of the inverse modeling approach for the CARTT_CBD variable. 
Colored circles were drawn proportionally to show the extent to which the accessibility to the Zurich 
CBD must be improved in order to compensate for the 85 CFH loss caused by the air noise. As can be 
seen, a significant difference can be observed between cluster 1 and cluster 3, which can be explained 
because cluster 3 is closer to the Zurich CBD that cluster 1. In addition, it might occur that the 
workplace of most of inhabitants from clusters 1 is not located by the Zurich CBD, as it may be in 
case of cluster 1, so that the rent of properties in cluster 1 would respond more slowly to reductions in 
the CARTT_CBD variable than the rent of properties in cluster 3.  

 

 

 

 

 

Figure 3. Clusters of noisy locations. 
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4. Final remarks 
The preliminary results illustrate in a simply manner how the inverse modeling can be employed in 
planning decision-making processes. It is however worth pointing out that more complex planning 
decisions can be made by including more variables in the inverse model analysis. By doing this, we 
can investigate the trade-offs between different solutions and alternatives for sustainable spatial 
planning. 
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Figure 4. Representation of the optimal value of the CART_CBD variable  
for each cluster. 
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Introduction 
This research uses a GWR analyses to compare stated attitudes to health service 
accessibility with measures of geographical access to those services. There is much 
concern over the effects of reductions public services, including health, in the UK and 
elsewhere, as result of central government cuts in funding. This research seeks to 
unpick the some of dimensions associated with access and service accessibility, 
including public perceptions of access, geographical access, and how they vary 
spatially as well as within and between different socio-economic groups and with 
health status.  
	  
Background and Method 
The Place Survey was launched in 2008 by the Department of Communities and 
Local Government in the UK. It reports National Indicators and was collected by 
local authorities who used random sampling to select potential respondents. The 
DCLG commissioned the survey in order to capture public opinions (satisfaction) 
about local authorities and local services. The DCLG specified most of the the 
questions although local authorities were able to add their own questions in their area. 
The survey by Leicestershire County Council conducted on behalf of the DCLG in 
2009 included a set of questions related to service accessibility, by capturing opinion 
over access to range of different public services. 
 
Respondents were asked to indicate the ease / difficulty of access to a range of 
different services: “From your home, how easy is it for you to get to the following 
using your usual form of transport?” Services over which attitudes over accessibility 
were sought included general practitioners, dentist, pharmacies and local hospitals. 
Additionally the Leicestershire implementation of the survey captured information 
related to respondents’ current health status, whether they have any long-standing 
illness, disability or infirmity. In Leicestershire there were 8530 responses to the 
Place Survey, with 415 / 8530 indicating dissatisfaction (replying either ‘dissatisfied’ 
or ‘very dissatisfied’) over access to GPs, 393 / 8530 stating that they had bad or very 
bad health (henceforth ‘bad health’) and 2824 / 8350 indicating that they had long 
term illness. 
 
The Output Area Classification was developed by Vickers and Rees (2007). It 
allocates each output area to one of 7 groups (further subdivisions exists which were 
not considered in this analysis). Based on the Output Area they fell in, Place Survey 
responses were allocated to an OAC class. Geographic distances were calculated to 
the nearest GP surgery from the post-code of each respondent.  
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This analysis used a logistic GLM to explore the relationship between dissatisfaction 
over access to GP surgeries, health status and geographic distance. It then used a 
GWR analysis to explore the spatial non-stationarity and variability in respondent 
dissatisfaction over access to GPs with these variables.  
	  
Results 
The GLM showed that Long Term Illness, Bad Health and Distance to the nearest GP 
surgery were significant predictors of dissatisfaction over access, whilst OAC classes 
were not (Figure 1). Analysis of the exponential of the coefficient estimates (in Figure 
1) calculates the odds ratios associated with different factors. The odds ratios are 
shown in Table 1 and suggest the following statements: 

-‐ For respondents with Long Term Illness the relative proportion of them being 
dissatisfied is around 2 times that for those who not have Long Term Illness;  

-‐ For respondents with bad health the relative proportion of them being 
dissatisfied are around 2 times that for those who not have bad health; 

-‐ The relative proportion of being dissatisfied over access to doctors increases 
by 30% (1.307) per extra km distance to the nearest doctors. 

 

 
Figure 1. Results of the GLM analysis of dissatisfaction over access to GP surgeries 
as run in R. 
 
Variable Illness BadHealth DocDist 
Odds ratio 2.059 2.012 1.307 
Table 1. The odds ratios generated from the exponential of the coefficient estimates 
associated with different factors 
 
A GWR analysis was then used to analyse for any the spatial variation or non-
stationarity in these relationships. The spatial distribution of effects of the different 
predictor variables on the proportion of being dissatisfied are shown in Figure 2. It is 
clear that, whilst there is little spatial variation in the effect of Long Term Illness and 
Distance, there is considerable variation in the effect of Bad Health, with a broad 
trend increasing from NorthEast to SouthWest. 
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a) b) c) 

Figure 2. The spatial variation in the relative proportion of being dissatisfied over 
access to GP surgeries for those a) with Long Term Illness compared to without, b) 
with Bad Health compared to those in good health, and c) the percentage increase in 
dissatisfaction with distance. The class divisions in each case are derived from 25th, 
50th and 75th percentiles of the distribution.  
	  
Discussion 
Much work has used geographical information systems (GIS) to analyse accessibility 
to services in rural areas, often focusing on one or two specific services and on 
considering access from only a spatial distance-based perspective. For example, 
White et al (1997) and Langford and Higgs (2010) applied GIS to analyse changes in 
post office provision and associated subsequent impacts on accessibility, whilst 
Comber et (2009) developed a model to optimise closures patterns against stated 
accessibility objectives. Martin et al (2002) and Lovett et al (2000, 2002) used GIS 
analyses to examine access to various health services within rural parts of the UK and 
these techniques have been used in rural studies in other countries (Bamford 1999; 
Brabyn and Barrett 2004). Kaufman (1999), Morton and Blanchard, (2007) and 
McEntee and Agyeman (2010) have also used GIS in relation to food accessibility, 
while Morrison and OBrien (2001) have looked at banking provisions. 
 
Perceptions of service access will be influenced by a number of factors, some of 
which may be quite local: the number of available services (choice), the ability to 
obtain those services (opening hours, public transport links), perceptions of service 
quality.  Linking measures of perceived access and geographic access and exploring 
the spatial variation in significant relationship using GWR, provides a richer analysis 
of the issues relating to service provision that are locally important a number of ways. 
First, it identifies where perceptions and actual service provision and access are 
consistent, Second, where perceived access is not strongly related to actual access, 
GWR identifies areas that require further investigation. 
 
The use of GWR to analyse attitude survey data relating to access in conjunction with 
physical measures of access, allows the relationship between different dimensions of 
access and accessibility to be examined. One might expect that as distance from 
services increased so might dissatisfaction over access to that service. Whilst the 
concept of accessibility is more complex than stated attitudes in postal survey and 
GIS-based distance measures, this type of analysis can be used to identify the 
locations where pockets of variation in the attitudes / distance relationship exist, for 
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example where dissatisfaction is high and access is high, where dissatisfaction is low 
and access is low and locations where either dissatisfaction or physical access is low 
and the other is high. Thus, by considering how such relationships vary in space and 
across different social groups, this method identifies subgroups that are potentially 
vulnerable to reductions in service provision. For example, communities where 
dissatisfaction over service access is high relative to distance are those with 
potentially low levels of social capital and which may be more vulnerable to such 
than others. The ability of communities to plug the service gaps resulting from 
reductions in public service provision is a crucial tenet of the Big Society agenda. 
Identifying vulnerable communities – those who may not have the social capital to 
bid for and run facilities at risk of closure or to take over local state-run services as 
envisioned in the Big Society (DLGC, 2010) – is important if those groups are not be 
socially excluded by the changes in service delivery. The use of GWR in this way 
demonstrates that it is possible to generate a richer analysis of accessibility by 
considering both the qualitative and quantitative dimensions of access.  
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1. Introduction
In reality, spatial processes tend to vary over space due to changing geographical contexts, 
and then spatial non-stationarity emerges (Jones & Hanham 1995). As more and more 
scholars are realizing this, they start to pay more attention to developing the local forms of 
spatial analysis methods, in which Geographically Weighted Regression (GWR) (Brunsdon 
et al. 1996; Fotheringham et al. 1998) is proposed as a kind of local technique to estimate 
regression models with spatially varying relationships. Coinciding with the first law of 
geography (Tobler 1970), “Everything is related to everything else, but near things are more 
related than distant things”, GWR makes a point-wise calibration around each regression 
point with especially concerning a ‘bump of influence’: around each regression point nearer
observations have more influence in estimating the local set of parameters than observations 
farther away (Fotheringham et al. 1998). 

How “far” is far? For this question, distance is a clear indicator by giving a quantitative 
metric. In mathematics, it is defined as a metric between elements in a metric space, and 
follows four conditions: non-negativity, identity, symmetry and triangle inequality. In related 
domains of GIS, Euclidean distance (straight-line distance) is the most commonly used 
metric. GWR is not an exception either that almost all the models have been calibrated by 
regarding it as the default metric. However, Euclidean distance might be not always the best 
choice for measuring the proximity between modeled objects; it could be an unreasonable 
measure due to surface distortion or partition from natural/man-made features. Theoretically, 
a GWR model can be calibrated perfectly with the potentially best distance measured, but the 
underlying rule of this is a black box due to the diversity of data and complexity of 
geographical context. One feasible way is to find an approximately optimal metric. 
Unfortunately there is no generic method for the distance metric selection, and in previous
papers they have adopted descriptive statistics or prior information to evaluate performances 
of different distance metrics (Mitra et al. 2002; Kamarainen et al. 2003; Shahid et al. 2009). 
In the case of GWR diagnostic statistics is concerned to be applied in the distance metric 
selection. For this purpose, a generalized form of distance metric in Euclidean space, 
Minkowski distance (MD) function, is introduced, and parameters are clarified according to 
the scores of Akaike Information Criterion (AIC).

2. Minkowski distance function
As a generalization of all the commonly used metrics in Euclidean space, MD is defined 

as:
1

1

n pp

i i
i

d x x


   
 
 (1)

where  1 2, , , nx x x and  1 2, , , nx x x   are two vectors in n-dimension Euclidean space, and 

p is a positive real number. When p is 1, 2 and infinity, the distance is known as Manhattan 
distance, Euclidean distance and Chebyshev distance respectively. Different values of p for 
this function mean different metrics for the space, which could be validated straightforwardly
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by the distance iso-surfaces with sampled values of p (as shown in figure 1). As noticed from 
figure 1, the rotation of coordinate system will lead to changes in distance measurement when 
the value of p is not 2. Then the rotated angle θ could be the other factor for this selection. 
The selection comes down to choosing an optimum value of p, together with considering the 
rotation angle θ of the coordinate axes. From a practical aspect, the 2-dimension Euclidean 
space is focused on the here, and in this case the formula(1) could be rewritten according to 
the coordinate transformation rule:

        
1

2 2 1 1
, 1 1 2 2

2 2

sin cos , arctan
p p p

p

x x
d x x x x where

x x     
            

(2)

a)  p=0.25                             b) p=0.75                                     c) p=1

d)  p=1.25                             e) p=1.75                               f) p=2

g)  p=4                             h)  p=8                                     i) p=∞
Figure 1 Distance iso-surface plots with different p values

3. Experiment
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In this paper, AIC is used to evaluate this selection. It measures the goodness of fit of a 
GWR model calibration, and the smaller AIC value means the better model calibration
(Fotheringham et al. 2002).

In GWR methodology, two kinds of kernel functions, fixed and adaptive, are available. As 
a matter of fact, this could be regarded as a good example of using different distance metrics: 
the former is the usage of absolute Euclidean distance while the latter is the consideration on 
relative Euclidean distance. Both kinds of kernel functions are also suitable for any specific 
MD metric. Following the procedures of the GWR technique, an optimum bandwidth should 
be determined for each calibration with different specific metric. On the consideration of the 
computational complexity, the cross-validation approach is used for the bandwidth selection 
instead of using AIC as the indicator. Here a rough procedure of distance metric selection is 
proposed in line with the above discussion:

1. For each specified pair (p, θ), select the optimum bandwidth based on the scores of 
the CV approach;

2. Compute AIC values with specified MD functions and selected bandwidth, and 
determine the values of (p, θ) with the smallest AIC value for specifying the optimum 
MD function and corresponding rotation angle.

  

(a) Calibrated with fixed kernel function  (b) Calibrated with adaptive kernel function

Figure 2 AIC values of the example GWR model calibrated with MD metrics specified by 
different sets of (p, θ)

In this paper, a sampled house price data-set in London is modeled to explore a spatially 
varying relationship between house price and floor area. For calibrating this GWR model, 90 
sets of (p, θ), which are permutations of the groups P{0.25, 0.75, 1,1.25, 1.75,2, 4, 8, ∞} and 
Θ{which is an arithmetic sequence from 0 to 90o with 10 elements}, are tested. In figure 2, the 
scatter plot shows us the computed AIC value for each specific(p, θ). Evidently the AIC 
values vary a lot with different values of p and rotated angles. As shown in table 1, the 
minimum AIC values for both kernels have significant reduction compared with results from 
using Euclidean distance, by 32.8 and 41.145 respectively.

Table 1 Comparison of results using Euclidean distance and the optimum (p, θ)
Fixed bandwidth Adaptive bandwidth

p 2 0.25 2 Inf
θ --- 0.1710423 --- 1.0262536

AIC 4199.701 4166.880 4227.42 4187.275
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4. Conclusion
The results show us that the calibration of a GWR model could be improved significantly 

by choosing an optimum distance metric with corresponding coordinate system rotation. 
However, this selection is concerned as a whole for the model calibration, while actually the 
distance metric is somehow depended on a particular feature attribute. If this selection could 
be fulfilled for each independent variable in a GWR model, then the better estimations might 
be made. Moreover the mixed GWR model (Brunsdon et al. 1999) could be regarded as a 
special case of calibrating a regression model using different distance metrics individually for 
different attributes, and it forms an interesting future challenge.
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1. Introduction The built environment and its inhabitants can be thought of as a set of 

multiple systems, where (1) humans interact with one another, (2) humans interact with 

the landscape, and (3) the landscape interacts with itself. These systems are not self-

contained or closed: they interact with one another, and across system lines. Thus, our set 

of multiple systems can be thought of not as a group of systems, but as a system of 

systems. When considering social and spatial as standalone systems, there is much 

evidence for the successful modelling of social processes with behavioural, agent-based, 

game-driven or discrete choice models, and geographic processes with a proven toolbox 

of spatial statistics and agent-based processes such as the work of Batty (2007) in cellular 

automata and other modelling capabilities. But to model social and spatial as a system of 

systems, where social/cognitive choices are represented spatially, current approaches 

seem to fall short. For example, cutting-edge research in social network analysis (see 

Onnela et al 2010) uses a “geography” that only accounts for Euclidean distance, and 

moreover, represents geography as an oversimplified node-link network, that neglects the 

adjacency, areal boundaries, cost distance and natural geographic processes. This paper 

will outline obstacles to the development of social/spatial research under the assumption 

that flow (also called interaction, connectivity, or network) data connects two places 

either by the transfer of humans or information. This paper develops a framework for 

theoretically approaching, implementing, integrating, and learning from these “systems of 

systems”, or more specifically, the intersection of social networks and geographic space, 

following the seminal work of Torrens (2010), but in the context of flow data.  We 

assume that social flows fall into three major groups: transportation, communications, 

and social network representative flows. In this framework, we address eight pragmatic 

issues for the use of these place-to-place connectivity measures in a spatial context.  

 

2. Eight Challenges for Social Flows within a GIS Framework 

 

(1) Difficulty characterizing system nodes: A system node can be characterized by 

its local features, but also by its relationship to other nodes. Each flow radiating from a 

node has a destination, properties of that destination, flow direction, distance and 

magnitude. Since nodes participate in many flows, it is hard to summarize these variables 

and group by node without major fidelity loss due to summarization. We suggest that 

unsupervised classification methods can be used to classify system nodes by their specific 

geometric radial configurations, as represented by a series of numeric vectors. Some 

examples include Self-Organizing Maps (Guo 2006), Eigenvector decomposition 

(Calabrese et al 2006) and K-means (Andris 2011). 
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Figure 1: A clustering approach is used to classify counties by their incoming migration flow geometries. 

 

(2) Unconstructed theories of edge assignment: Edges that represent 

telecommunications have little interaction with the space between calling agents, Adams 

(2010) while in comparison, edges between a pedestrian’s origin and destination represent 

an embeddedness in the area between start and stop points. We find difficulty expressing 

edges that overlay on maps, as they do not inform the user as to the relevance of the trace. 

A framework for representing these connections is presented as a spectrum that ranges 

from fine-grained traced paths to a more tabular origin/destination representation. (Figure 

2) 

 

  
Figure 2: A system for classifying different geodesic traces informs a user of the appropriate representation 

of a trace by its reliance on the physical network. 
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(2) Inability to employ spatial analytic 

methods: These data are mostly unable to be 

analysed with spatial statistics, like point-pattern 

analysis, and spatial operations (like a clip or 

spatial join) as these statistics are fit for single 

points, polygons, and less frequently, lines, 

based on each entity’s proximity or adjacency to 

one another. For example, the widely-used 

Geographically-Weighted Regression (Brunsdon 

et al 1998) has uncovered relationships between 

variables using continuous and point space, but 

is not currently fit for flow data. (see, for 

example, Figure 3) Here, we suggest amended 

versions of traditional spatial analytic methods 

by considering how edges should be assigned to 

geographic space (see (2)) in order to use the 

most appropriate representation. Thus, we can 

apply proximal clustering and statistical 

methods to origin/destination nodes, or assigning 

statistical properties to the edges themselves. 

Without sensitivity to how the flow interacts 

with the ground below it, the entity’s ‘existence’ 

in geographic space can have various meanings. 

 

(3) Muddled visualization: Since flows connect two places in absolute, discrete 

space, the edges that connect these places are poorly suited for large-scale visualization 

because the number of edges in a typical dataset is too dense for the constraints of 2D 

space. For this, we suggest querying, filtering and automating visual and tabular ordinal 

hierarchies, in addition to the classification methods mentioned in (1). 

 

(4) Lack of visual-analytic systems: There are currently a lack of ESDA and 

software platform systems for exploring (a) the relationship between a social network and 

geographic space and (b) spatial relationships between non-adjacent entities. Following 

the work of Takatsuka and Gahegen (2002) and Anselin et al (2006) with the GeoVISTA 

Studio and GeoDA, respectively, we suggest that interactive dynamic environments be 

created for users to explore social and spatial configurations, and statistical properties, in 

a single view. (Figure 4) 

 

 

Figure 3: A social network of reported gang 

fraternity overlayed in geographic space 

shows that closeness does not always 

correspond with adjacency. (Figure from 

Radil et al 2010) 
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Figure 4: A prototype for an interactive social/spatial geo-visualization environment allows the user to 

manipulate entities in a force-directed social network in tandem with a linked map. In this example, yellow 

entities in the network are political figures, and correspond to their representative districts, as also 

highlighted on the map. 

 

(6) Few socially-driven flow prediction methods: Geographically-dependent decisions 

to meet, migrate, travel or communicate are comprised of more than distance factors, but 

social factors. There is a higher “cost” of traveling somewhere unknown and without 

friend recommendations, than to a familiar place. This familiarity is evidenced by 

previous travel or communications flow data,  in migration, this phenomena is known as 

‘chaining’. (Castells 2000) Given that decisions to relocate or choose a job are often 

driven by social reasons, we present new prediction methods that account for chaining by 

using components of Bayes’ Law, and focusing specifically on the disaggregate, unique 

relationship between place-pairs, in addition to traditional gravity models.  

 

(7) Lack of GIS infrastructure for flow manipulation: The phenomenon of a spatial 

flow incorporates the features at its origin and its destination, as well as features of the 

flow. In the field of Database Management Systems (DBMS), the theory and 

implementation of Spatial Data Infrastructure (SDI) is not yet developed to treat two 

unique points and a connecting edge as a unit of analysis, making selection, operations 

and manipulation difficult. (Figure ) Perhaps it is for these reasons that flow data has not 

been as prominent of a fixture in Geographic Information Systems, in terms of software, 

computation, statistical endeavours, academic and professional use. Solutions to these 

challenges are manifold, but early advancements suggest combining graphs for easier 

querying. (Doytsher et al 2009) We suggest creating a new object (called not point, line 

or polygon, but ‘flow’ etc.) that packages nodes and edges into a single entity. This entity 
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can then be queried and interactively selected by its named components (e.g. the origin, 

destination and trace). 

 

Figure 5: An example flow in the ArcGIS software environment, and its corresponding tables illustrates the 

geographic entity selection framework. 

 

(8) Difficulty developing a lingua franca and taxonomies for the field: There seems to 

be little research on ontologies, nomenclatures, typologies and frameworks for flow data, 

although these linguae seem to be successfully implemented for the separate fields of 

Complex Network Analysis and Geographic Information Systems. Refining these 

typologies may enable progress in the synergistic field, and its ability to be 

communicated, improved, and understood. Initiative for this streamlining should come 

from multiple GIS entities: (1) software corporations, (2) GIS textbooks, (3) Higher 

Education terminology in labs and lectures, and (4) peer-reviewed literature.  

 

3. Conclusion Given that geographers can benefit from better manipulation of social 

flows and connectivity over space, we consider eight pragmatic challenges and possible 

solutions for use of social flows and social distance in the digital era. We hope these 

issues can aid in analysis for operations, logistics, and planning, in tasks such as city-to-

city airline passenger magnitudes, future road capacity, inventories of infrastructure 

needs for urban growth, city shrinkage, migration forecasts, site suitability for 

cooperative meeting places, epidemiological spreading or containment models, and 

suggestions for business franchise or advertisement expansion.  
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1. Introduction

Pedestrian navigation applications, specifically for mobile devices, have recieved much re-
search and development attention over the past decade or so with many different types of
solutions developed (Kenteris et al.; 2011). The most common interface is a map-based in-
terface with written and/or verbal turn-by-turn directions (possibly including landmark infor-
mation). Haptic technology, or haptics, is a tactile feedback technology that takes advantage
of our sense of touch by applying forces, vibrations, and/ormotions to the user (Nakao et al.;
2010). The potential of haptic technology has only recentlystarted to receive the attention of
the research community (Jacob et al.; 2010). In mobile devices haptic-feedback is delivered
in the form of vibrations which can be programmatically controlled using the phone soft-
ware API. In this paper we describe a simple, flexible, model for the integration of haptic
feedback into pedestrian navigation applications on mobile devices. A constraint is that the
mobile device must have an onboard GPS and compass. The vibration motor on the mobile
device must also be capable of being controlled from software running on the device itself.
Our model allows a “heads up” approach to pedestrian navigation with the mobile device
where the user is not required to keep looking down to check the screen of the mobile de-
vice. For testing purposes text-based navigation assistance is provided in conjunction with
the haptic-feedback on the device screen in our prototype implementation. Three distinct
modes of vibration of the device are used to provide haptic feedback to the user.

2. Description of Model

Our model is presented in Algorithm1 and described in Section 3.. The user starts our
application on their mobile device. The first step involves choosing both the start location
(default is their current location taken from the device GPS) and destination. A simple slippy
map interface is provided for this purpose. When the user hasselected the route start and end
points the Cloudmade routing service (Cloudmade; 2011) is automatically invoked with the
parameters describing the requested route. A GPX file (illustrated in Figure 1) is returned
to our application on the device. This file is immediately parsed and stored in the spatial
database (PostGIS). The application then indicates that the use must scan (see theScan()
function in Algorithm1 below) for the direction they should proceed in.Scan() requires
the user to hold the device in front of them and slowly move it to find the correct forward
direction. The circular buffer size around each route pointis also set (see Figure 2). If the
user is inside the buffer of a route point the application causes the device to vibrate (pattern
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1) to indicate the user must scan for the correct direction. When the correct direction is
found the device vibrates again (pattern2) to indicate the correct direction. If the use strays
off in the wrong direction the application vibrates (pattern 3) and they must scan again or
physically return to the route themselves. This process is repeated until the user has reached
their destination.

Figure 1:A GPX file output from the Cloudmade Routing Service overlayed on an OpenStreetMap
roads shape file. Circular icons represent route points in the computed shortest route.

3. Implementation of our Haptic-Feedback Model

A HTC Magic, running the Android Mobile Operating system, was used for development
and user testing. All software development on the software device was carried out in Java.
The Android Software Development Kit provides the tools andAPIs necessary to begin de-
veloping applications on the Android platform using the Java programming language. The
Cloudmade Routing service (Cloudmade; 2011) was used as theweb-service for generat-
ing the shortest pedestrian paths. Cloudmade use the globalOpenStreetMap database for
computation of shortest paths. With the Cloudmade routing service we have more “human
orientated” walking routes. If the OSM data has paths acrossopen areas properly tagged
then these are considered in the computation of the shortestwalking route. The Cloudmade
routing service returns computed routes in JSON or GPX formats. Figure 1 shows the result-
ing GPX output file generated by the Cloudmade Routing Service for the shortest pedestrian
route from the Computer Science Department at NUIM to the Maynooth Business park. The
circular icons represent route or turning points in the computed shortest pedestrian route. A
schematic diagram of our implementation is shown in Figure 2. A PHP script runs on the
database webserver and this script acts as a broker service between our local spatial database
and the mobile device. The script recieves the user locationdata everyt seconds. As de-
scribed in Algorithm1 the computed route is stored in this database. The PHP scriptmatches
the user location to this route and returns a response to indicate if the user is: going in the
correct direction (no vibration), within the buffer of a route point (vibration1), going in the
wrong direction or is off route (vibration2), or has reached their destination (no vibration).
Initial user trials with this application have focused on observing and eliciting feedback on
how test participants: interact with the haptic application, use the application at the route
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points, respond to feedback, and rate the usability or usefulness of the application. We will
present quantitative results of a series of user trials at the GeoComputation conference and
in future papers.

Figure 2:An example route. The user position and bearing is taken fromthe mobile device everyx
seconds. Upon delivery of this information to the broker software at the DB an action is initiated on
the mobile device

4. Conclusions and Future Work

This paper has given a brief overview of a flexible model for integrating haptic-feedback into
pedestrian navigation applications on mobile devices. To properly quantify the advantages
and disadvantages of the model we will need to carry out additional user tests which will
involve a wider range of participants. Initial feedback from our trials of the application with
a small group of test participants was positive. The users found the application novel and
quickly learned the vibration patterns and how to respond tothis feedback. However, users,
unfamiliar with the route, who used the haptic-enabled device, paused for longer times at
route points compared to users familiar with the test routes. In an extensive study Ishikawa
et al. (2008) compared the wayfinding behavior and acquired knowledge by participants
who received information about routes from a GPS-based navigation system, from maps,
and from direct experience of the routes. With respect to wayfinding behavior, participants
who used the GPS-based navigation system traveled longer distances, made more stops dur-
ing the walk than participants who viewed maps, and walked slower overall. We shall be
carrying out similiar user testing to investigate if walking performance of pedestrians, using
the haptic application on their mobile device, improves as less “head down phone viewing”
is required. Finally, using the vibrate function on the mobile device can drain power quickly
from the battery. Most mobile device users would find the possibility of a dead battery a
serious drawback to haptic-assisted navigation. Battery lifetime is a major usability concern
to mobile phone users (Rahmati and Zhong; 2009). Rahmati andZhong (2009), in a study of
mobile phone users, “found that most recharges are driven bypressures of time and location
instead of low battery”.
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A Description of Algorithm for a Haptic-assisted Pedes-
trian Navigation Application

Data: The input start locations and the destination locationt (both longitude,latitude)
of the route required

Result: In-route Haptic-assistance for pedestrian using their mobile device on route
betweens andt

Call Cloudmade Routing Service;
Download XML-encoded result from Cloudmade;
Parse and store route in Database;

begin
d←− setRoutePointBufferSize(10m);

while (U.location 6= buffer(t, d)) do
U ←− getCurrentUserLocation() This includes user direction;
D ←− getLocationOfNextRoutePoint();
if (U.location = buffer(v, d)) then

repeat
Until user points their mobile device in the correct direction;
Vibrate when correct direction is found;

until (Scan() = true);

User can now proceed in the correct direction;
end
if (U.location 6= buffer(v, d)) then

if (U.direction = D) then
Everything is OK;
Put the green light logo on the phone display;
No feedback necessary;

else
Not going in the correct direction;
Vibrate ;
repeat Until user corrects their directionuntil (Scan() = true);
Update direction variables;
OK to proceed;

end
end

end
end

Algorithm 1: The algorithm describing the integration of haptic feedback and a pedes-
trian route
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1. Introduction  
Trajectory-based data mining is a very active research topic in the field of Knowledge 
Discovery in Databases (KDD) in response to the influx of mobile object data. Using a 
set of spatio-temporal sequences of mobile object data collected from various types of 
Location Aware Technologies (LATs) or generated by simulation models, trajectory data 
mining discovers spatio-temporal knowledge through exercises including pattern 
detection, clustering, classification, generalization, outlier detection, and visualization. 
Potential applications across various fields include, for example, vehicle and pedestrian 
traffic control (e.g., transportation management and facilities design); Location-Based 
Services (LBS) (e.g., navigation assistance and mobile advertising); weather forecasting 
(e.g., hurricane trajectory prediction and risk analysis); law enforcement (e.g., video 
surveillance for criminal activities); animal conservation (e.g., tracking at-risk animal 
populations); and logistics for goods and human. 

In recent years, many approaches have been proposed and applied to various 
fields to investigate patterns and trends from massive datasets of mobile objects (e.g., 
Gaffney et al. 2007; Lee, et al. 2007; Andrienko et al. 2009; Guo et al. 2010). Research 
challenges identified in previous works include characterization, generalization, and 
visualisation of massive and complex trajectories to discover interesting patterns, trends, 
and useful knowledge across scales. 

In this paper, we propose a trajectory data mining framework that employs 
trajectory partitioning and clustering algorithms to extract behavioural patterns of mobile 
objects, as well as visual analysis to display extracted patterns and trends in space and 
time. As a case study, we developed an Agent-Based Model of pedestrian evacuation 
based on the social force model and generated crowd evacuation dynamics on a street 
corridor. The proposed framework successfully differentiated and visualized spatio-
temporal clusters of local movement behaviours including smooth evacuation and 
bottleneck.  
 

2. Methodology  
To investigate movement behaviours in trajectory datasets, our proposed trajectory data 
mining framework includes three methodological steps, trajectory partitioning, trajectory 
clustering, and spatio-temporal visualization of trajectory clusters.  

 Step1: Trajectory partitioning  
o Distance-Threshold approach 
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 Step 2: Trajectory clustering 
o Quantification of sub-trajectory 
o Principal Component Analysis (PCA) 
o K-means cluster analysis 

 Step3: 3D visualization of trajectory clusters 
o Spatio-Temporal Kernel Density Estimate (STKDE) and volume 

rendering technique 
 
A set of trajectory dataset is described as {Trajectory Set: TRset = TR1,TR2, TR3, …, 

TRi, where i denotes the number of mobile objects}. Each trajectory is composed of a 
sequence of three-dimensional points {{TRi = p1, p2, p3, …, pj, where j denotes the 
number of points in the trajectory i }, {pj = x, y, t }}. The trajectory partitioning process 
partitioned an entire trajectory into trajectory partitions (sub-trajectories), the process of 
which is a key to extract local movement behaviours. In this study, a Distance-Threshold 
approach was employed. It uses a distance threshold value to partition a trajectory into 
sub-trajectories. This is based on the assumption that in many situations human 
movements involve stopping/staying when a person changes its behaviour. Such 
behaviours can be seen at multiple scales; for example, when a pedestrian decelerates and 
ultimately stops to make a sharp turn or to avoid collisions with other pedestrians; a 
commuter stays at home, walks to a bus stop, waits for a bus, and stays at its office to 
work; and a person may relocate and find a new home to stay with its life events. 
Methodologically, partitioning a trajectory based on staying behaviour can be simply 
achieved by introducing a Distance-Threshold (Thd). If a distance of each segment in a 
trajectory is less than Thd, then the segment is assigned as STAY and a trajectory is 
partitioned by the segment. If consecutive segments are assigned to STAY, those segments 
are considered as one sub-trajectory in order to differentiate short and long staying 
behaviours. 

For each trajectory partition (TRpar(i)), multi-dimensional vectors are calculated to 
characterize the sub-trajectory. The vector values include total duration (dt), total 
horizontal distance (dx), total vertical distance (dy), total two-dimensional distance (d2D), 
velocity vector on x-axis (vx), velocity vector on y-axis (vy), and velocity (v), horizontal 
beeline distance (dsx), vertical beeline distance (dsy), two-dimensional beeline distance 
(ds2D), area of minimum bounding box (mbb), and sum of cosine of turning angle 
between two consecutive segments (sct).  All of these vector values are then normalized 
with mean equals to 0 and variance equals to 1. 

To reduce the dimensionality of multiple vectors of sub-trajectories, PCA is 
employed. PCA is a multivariate statistical technique to the dimensionality of a dataset 
consisting of interrelated variables by finding a new set of variables, i.e., Principal 
Components (PCs), which is smaller than the original set of variables but still containing 
most of the information in the original dataset. Eigenvalues of PCs measure the amount 
of variation, and this study uses PCs if their eigenvalues are greater than 1. PC scores of 
each sub-trajectory for each PC (Eigenvalue ≥ 1) are computed, and then they are used as 
a new input dataset for sub-trajectory clustering. 

To classify sub-trajectories for extracting local movement behaviours, the K-means 
clustering algorithm develped by Hartigan & Wong (1979) is applied. To estimate the 
optimal value of k in K-means clustering, clustering algorithms are run with different 
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values of k (min:2, max:20), and the optimal value of k is selected by the Gap Statistic 
(Tibshirani, Walther, & Hastie, 2001). 

The Space-Time Kernel Density Estimattion (STKDE) (Brunsdon et al. 2007) and  
volume rendering technique (Levoy 1988; Nakaya & Yano 2010) are used for visualising 
cluster density distribution in space and time. The interactive approach of volume 
rendering is achieved using an open source visualization software, ParaView (Henderson 
2007).  
 

3. Results 
As a case study to examine the proposed trajectory data mining framework, data 
regarding pedestrian evacuation dynamics was analyzed. The trajectory data was 
generated by an ABM based on the social force model (Helbing and Molnár, 1995). In its 
simplest form, there are three forces formulated as follows. 
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The first force is a driving force toward a desired destination described by a pedestrian i 
of mass mi, of desired velocity 0

iv , of desired direction 0
ie , and of actual velocity vi with a 

certain characteristic time iτ . The second force is a repulsive force, ∑
≠ )( ij

ijf , describing the 

interaction effects with other agents j (j ≠ i), and the third force is a repulsive force, 
∑

w
iwf , to avoid walls and obstacles. Pedestrians in this basic form of the social force 

model walk unidirectionally, i.e., each pedestrian travels between an origin and a 
destination. This is too simplistic, so to overcome the deficiency, the idea of multiple 
waypoints is implemented. In the algorithm, each pedestrian i owns a sequenced list of 
waypoints and walks toward the first waypoint in the list. When it reaches at the 
waypoint within a certain buffer zone described by a two-dimensional vector bZ(bx, by), 
the waypoint is removed from the list and the pedestrian walks toward the first waypoint 
in the new list until reaching the final destination.   
 In this study, pedestrian evacuation dynamics on a diagonal corridor was 
simulated. In the simulation, pedestrians evacuate from North, West, and South corridors 
to an East exit. Table 1 represents initial settings for model environment and parameters 
used for the social force model. To analyze trajectory data of simulated pedestrian 
evacuation dynamics, locations (x,y) of pedestrians and corresponding time stamps were 
output at every one second (=30 frames). As a result of the Gap Statistic, we obtained 
five sub-trajectory clusters as the optimal k value.  

Figure 1 illustrates the clustering result of sub-trajectories using the Distance-
Threshold partitioning approach (k=5). Figure 2 presents the culster profiles describing 
movement characteristics within clusters. The vertical axis represents independent 
variables for corresponding cluster IDs (k=5) and the horizontal axis shows the average 
of normalized value of independent variables within a cluster. Figure 3 visualises sub-
trajectory cluster density distributions in space and time estimated by STKDE. This 
explains when and where a particular pattern of movement behaviour occurred.  
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These results showed that sub-trajectories of Cluster 1 and 2 are identified as smooth 
evacuation behaviours because both have higher average velocity values and continuous 
trajectories without staying or stopping. In addition, these clusters are found beneath 
Cluster 4 near the intersection area and on the East corridor in the STKDE map indicating 
that pedestrians who reached at the corner of the intersection earlier have successful 
evacuation. On the other hand, Cluster 4 and 5 are partitioned by Cluster 3 that represents 
staying or stopping behaviours near the corners of the intersection. This explains the 
evacuation bottleneck due to the overcrowding. 
 

Model environment 

Number of pedestrians 120 
Area width 800 
Area height 700 
Simulation Tick 1 frame 

Parameters for social 
force model 

Pedestrian’s mass mi 1 
Pedestrian’s desired velocity 0

iv  1.3 
Characteristic time iτ  2 

  Table 1. Settings of pedestrian evacuation model. 
 

 
Figure 1. 2D images of sub-trajectories by each cluster (k=5) 
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   Figure 2. Sub-trajectory cluster profiles (k=5) 
 

-1.5 -0.5 0.5 1.5 2.5

ds2D

dsy

dsx

mbb

sct

vy

vx

v

d2D

dy

dx

dt
1

2

3

4

5

GeoComputation 2011

342

Session 7B: Space-Time Modelling & Analysis (2)



 
Figure 3. Sub-trajectory cluster distributions in space and time (k=5) 
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1. Introduction 
Time geography, theorized by Hägerstrand (1970) and extended by Miller (2005a), 
provides an elegant mathematical framework for analyzing the movements and 
interactions of spatial objects. The basic elements of time geography—the space-time 
path and prism—provide the foundation for a number of analyses in GIScience.  
Notable examples include: quantifying interactions among humans (Miller 2005b, 
Neutens et al. 2007b), understanding human spatial behavior (Schwanen and Kwan 
2008, Shaw and Yu 2009), quantifying spatial uncertainty (Neutens et al. 2007a), 
measuring accessibility (Novak and Sykora 2007), and modelling traffic flows 
(Raubal et al. 2007, Kuijpers et al. 2010).  

While time-geographic techniques are well established in GIScience, recent work 
has aimed to transform the discrete mathematics of the space-time prism into a 
statistical formulation that can serve as the basis of a 'probabilistic' time geography.  
For example, Winter and Yin (2010a,b) quantified probability distributions for 
individual objects located within space-time prisms according to random-walks. They 
found this probability distribution was uneven, suggesting probabilistic space-time 
cones can be more informative than discrete ones.  In other work, Downs (2010) 
developed a fixed-velocity time-geographic density estimator which computes a 
continuous probability density surface of a mobile object's location. This is 
accomplished given a set of control points in a space-time path and a specified 
maximum velocity parameter. This technique is useful for quantifying and visualizing 
the spatial distribution of a variety of moving objects, such as pedestrians or animals.  
Both of these studies highlight the need for continued development of probabilistic 
time-geographic techniques. 

This paper builds upon the work of Downs (2010) by developing an adaptive-
velocity time-geographic density estimator. First, fixed-velocity time-geographic 
density estimation is reviewed in order to discuss its limitations and to provide the 
mathematical foundation for the new technique.  Second, the variable-velocity version 
is formulated.  Finally, for comparison, both methods are applied to a sample tracking 
dataset that documents the movements of a pedestrian. 

2. Fixed-velocity time-geographic density estimation 
Time-geographic density estimation (TGDE), detailed by (Downs 2010), incorporates 
the fundamental elements of time geography with statistical density estimation. TDGE 
is used to generate a continuous probability density surface for a moving object over 
time given a set of observed control points.  The technique operates in a manner 
analogous to kernel density estimation except instead of applying a kernel to each data 
point (Silverman 1986), a distance-weighted geo-ellipse function is fit to each 
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consecutive pair of control points in a space-time path.  A geo-ellipse denotes all 
potentially reachable locations during the time interval between consecutive locations; 
in other words, the geo-ellipse is a geometric footprint of the space-time prism for a 
specified time period.  

Mathematically, TGDE can be formulated as: 
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where )(ˆ xft is the time geographic density estimate at any point x in a map, n denotes 

the number of control points which are indexed consecutively as i and j, t records the 
timestamp, v is the object's maximum velocity, and G is a distance-weighting function 
of the geo-ellipse. The maximum velocity is assumed to be constant over the tracking 
duration and must be specified by the user. Its value can be determined by either the 
theoretical or the observed maximum velocity of the object.  The geo-ellipse function 
must be a discrete distance-weighting operator, such as a linear decay function, in 
order to ensure that no intensity value is computed at locations where the object could 
not have been located given constraints imposed by the control points.  The geo-
ellipse function operates on the distance between an evaluation point x and each of 
two consecutive control points, which is divided by the maximum distance the object 
could have travelled during the time interval given its maximum velocity.  The sum of 
weighted distances at each x is then multiplied by 1 divided by n-1 geo-ellipses times 
the square of the maximum possible travel distance. Once intensities are computed for 
all locations in the map in this manner, a continuous probability density surface of the 
object's spatial position during the tracking interval is realized.  Since, this method 
assumes the maximum velocity is constant throughout the tracking interval, we now 
refer to the method as fixed-velocity TGDE.   
  

3. Adaptive-velocity TGDE 
A potential limitation of fixed-velocity TGDE is that it assumes the maximum velocity 
of the object is constant over the tracking duration.  However, in practice, the speed of 
an object is likely to vary over time, depending on its behavior, the situation, or other 
factors. As such, time-geographic density estimates could be improved if lower 
maximum velocities could be specified for tracking intervals where the object 
travelled at less than maximum speed. We propose adaptive-velocity TGDE to 
accomplish this task. The formulation is similar to that for fixed-velocity TGDE 
except for two changes.  The Constant from the previous formula is replaced with the 
maximum velocity for each space-time path segment for each pair of control points.  
Additionally, the maximum length of the space-time path is computed by summing the 
maximum path segment lengths as computed from the maximum velocities and the 
corresponding elapsed times.  Otherwise, the density estimates for variable-velocity 
TGDE are computed in the same manner as the fixed-velocity version.  

4. Application to Pedestrian Tracking Data 
This section compares fixed-and adaptive-velocity TGDE using pedestrian tracking 
data. The methods are illustrated using a hypothetical tracking dataset of 60 points. 
The first 20 points represent a running movement, the second 20 points are clustered 
in a single location of relative inactivity, and the last 20 points represent walking.   
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Figure 1 shows a resulting fixed-velocity time-geographic density surface for a 
sample of 60 control points that record movements of a pedestrian; note the shaded 
area delineates the object's potential path area (Miller 2005a) or all locations it could 
have potentially visited during the time duration. The approximate trajectory of the 
pedestrian is illustrated using a space-time path constructed by connecting adjacent 
points with straight-lines. 
 

 
Figure 1. Fixed-velocity time-geographic density surface 

 
Figure 2 illustrates adaptive-velocity TGDE for the pedestrian data, using different 

maximum velocities for each of the three portions of the space-time path. This 
example illustrates how the adaptive-velocity TGDE surface more precisely delineates 
the possible areas where the pedestrian was located during the tracking interval as 
compared to the fixed-velocity surface. While the computed density surfaces are 
identical for the first portion of the trajectory, there are clear differences in the latter 
two segments, where the potential path area is much narrower.  In situations like these, 
where maximum velocities can be specified in greater spatial detail, adaptive-velocity 
TGDE can produce more accurate probability density surfaces than its fixed-velocity 
counterpart.  This research further evaluates both techniques in the context of mapping 
pedestrian movements using GPS tracking data collected for students walking on a 
university campus. 

 

 
Figure 2. Adaptive-velocity time-geographic density surface 
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1. Introduction 

Health facility location planning is an important for improving accessibility, coverage and in 

the case of ambulances, response times. Location-Allocation problems concerns the spatial 

locations of resources (Brandeau and Chiu, 1989) and involves strategic decision-making in 

relation to where to locate, how to allocate and what time constraints to consider to ensure 

adequate coverage of demand. For example, a typical ambulance location problem involves 

making decisions on where to locate ambulances or paramedic facilities to minimise response 

times (Sasaki et al., 2009; Comber et al., in press). In order to solve this problem, several 

location modelling techniques are described in the literature. These techniques coupled with 

GIS spatial analysis, have proven to be very efficient in addressing location-allocation 

problems (e.g: Kumar, 2004; Oppong and Hogson, 1994). Though previous studies have 

applied these techniques, one limitation in their application is the assumption that demands 

for public health facilities are static and fixed. This is contrary to real life scenarios where 

demands vary generally spatially at various time of the day, as people move from their place 

of residence to other locations (e.g journey to work). 

Given this limitation, it is important to develop approaches that locate emergency medical 

services strategically in order to account for spatio-temporal variations in demand. Optimising 

ambulance and paramedic service location by considering such variations will improve 

ambulance response times to emergency cases. Ambulance response times are critical for 

patient survival especially for severe emergency cases, where time to pre-hospital treatment is 

critical (Snyder et al., 2007).  

This paper addresses this gap by using a modified P-median model to optimise ambulance 

service locations for a spatio-temporally varying population based on journey to work data in 

Leicestershire. 

2. Approach 

The objective of this work involves identifying the optimum location of ambulances by using 

a modified P-median model while accounting for any spatio-temporal variation in demand. 

The P-median selects subset of facilities known as P facilities from a set of candidate 

facilities that minimises the aggregate travel or time between demand points and nearest 

facility locations (Fotheringham et al., 1995). The classical P- median model first espoused by 

ReVelle and Swain (1970) was modified to account for spatio-temporal variation by 

incorporating a spatial variation (xi, yi) and time component (tn). See equation 1. 
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I....m.  = Set of demand locations (centroid points). 

J.....n. = Set of ambulance station location (20 ambulance stations). 

(xi , yi). = Location coordinates (showing spatial variation in demand). 

tn =  Time (showing temporal change in demand). 

dij = Shortest distance between demand and ambulance station locations 

ai   =  weight of demand node i at time tn. 

 

A typical location-allocation problem involves selecting optimum location choices from a 

pool of candidate location and allocating demand to these points. In this study, the pool of 

candidate location consists of 20 ambulance stations in Leicestershire, with a choice of 

selecting 12 ambulance stations to allocate to 583 demands.  Finding solution for this type of 

problem is computationally difficult because the solution search space is large. For example, 

choosing 12 ambulances from a set of 20 ambulances requires a solution search space of 12! 

/12! (20-12) possible solution.  

Deriving solution for this problem involve the application of heuristics. Teitz and Bart 

heuristic was applied to solve the P-median problem. It is interchange heuristics that selects a 

set of initial random solutions and improves their outcome by swapping until there are no 

further improvements in the solution of the objective function (Teitz and Bart, 1968).  

The modified P-median model helps to answer certain questions that arise in spatial health 

planning such as for example: i) where should ambulances be located when demand is 

spatiotemporally varying?  ii) What ambulances resources should be allocated to certain areas 

to ensure that demand is covered at a particular time? iii)Where are the best places to locate 

an ambulance or paramedic facility to minimise the response time (distance) prior to an 

emergency event at specific time?.   

3. Results 

Figures 1 and 2, illustrates the optimum location points of limited number of ambulances for 

day and night time population respectively. The location model suggests a better way to 

allocate ambulance resources during the day and night to ensure optimal coverage and 

minimise ambulance response time.  

 

 
     Figure 1.0 Ambulance location points and allocation areas: 

Day time population in Leicestershire 
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Figure 2.0 Ambulance location points and allocation areas: 

Night time population in Leicestershire 

 

Optimum locations for ambulances are represented with proportional circles. Each circle is 

located on the region they serve, with their sizes relative to the proportion of population 

(demand) they cover. For example, a larger circle signifies more demand allocations. In 

addition, lower super output areas (LSOAs) with similar hue are served by the same 

ambulance. The results will be described and discussed in more detail during the conference 

presentation.  
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1. Introduction 
Location-allocation (LA) problems deal with the search of optimal locations for one or 
more facilities with respect to the spatial distribution of the demand which, in turn, 
should be allocated (assigned) to these facilities (Church, 1999).  

LA problems have been an active research topic for more than a century, since Alfred 
Weber formulated his “Theory of the Location of Industries” in 1909. The extension of 
Weber’s work resulted in one of the most well known types of LA problems, the so-
called p-median problem. This problem consists on finding p facility locations such that 
the total sum of the distance between the demand and the facilities is minimised.  

Since Weber’s original work, LA problems have attracted a lot of attention in the 
scientific literature as their solution is relevant for optimally placing both public and 
private facilities like hospitals, supermarkets, distribution centres, and so forth (Li and 
Yeh, 2005; Sasaki et al., 2010). However, finding optimal solutions to LA problems has 
proven to be far from trivial as they are NP-hard (Murray, 2010).  

LA problems are made up of several components: the type and number of facilities, 
the nature of the demand, and the geographic space where the problem should be solved 
(e.g. continuous vs. networks). Because of the computational complexity and the 
diversity in types of LA problems, numerous algorithms and optimization methods have 
been developed (Murray, 2010). Basically, LA “solvers” can be categorized into 3 
classes: 1) exact methods, which only exist for simple problems or that require complete 
counting of all possibilities, 2) heuristics, which are fast methods to find “reasonable” 
solutions, and 3) metaheuristics, which are robust methods that find better solutions than 
the ones found by heuristics as they are usually not trapped in local optima. 

This work explores the use of two well known metaheuristics, namely genetic 
algorithms and simulated annealing, to solve LA problems. In addition, it makes use of 
geographic information system (GIS) to store, to pre-process and to visualize the spatial 
datasets that are typically needed in LA problems. The following two sections briefly 
review each of these metaheuristics, and a case study is presented in the final section to 
illustrate our implementation. 

GeoComputation 2011

353

Session 7B: Space-Time Modelling & Analysis (2)



1.1 Genetic algorithms  
Genetic algorithms (GAs) were introduced by Holland (1975). These are based on the 
evolutionary idea of the “survival for the fittest”. As a consequence, terms like individual, 
population, reproduction, selection, crossover and mutation are commonly used in this 
search technique. 

A population is a set of individuals, each of which represents a potential solution to 
the problem. The fitness of individuals is judged by the value of the objective function 
that they yield, where the objective function is the function that we seek to optimize. 
Selection, mutation and crossover are three main operators that control the evolution of 
the population until a stop criterion is met. The best individual in this final population 
represents the solution to the problem (e.g. the value that minimizes a given function).  

GAs are efficient in finding near optimal solutions for complex optimization 
problems, which explain why they have been applied in many disciplines (Goldberg 
1989). Hosage and Goodchild (1986) presented one of the first papers using GAs to solve 
LA problems in a GIS context. 
 

1.2 Simulated annealing  
Simulated annealing (SA) was inspired by the process of crystals forming during the 
cooling of metals/minerals (Kirkpatrick et al., 1983 and Černý, 1985). Its methodology is 
based on neighbourhood search. An initial solution is first proposed, and then the 
simulated annealing continues to seek for better solutions through iteration. For each 
iteration, SA randomly chooses a new solution if its fitness value is better than that of the 
previous solution. If the fitness value is not better, SA can still select it according to a 
probability function that depends on the cooling temperature.  

SA is a serious competitor to GAs and it is worth to compare their results as both 
metaheuristics are derived from analogy with natural systems and deal with optimization 
problems of same type (Sivanandam and Deepa, 2008). 
 

2. Case study and implementation 
The work is illustrated with data from the city of Enschede (The Netherlands). It draws 
on public primary school data to establish a simple and generic school planning scenario. 
This planning scenario aims to evaluate the location of the current public primary schools 
(e.g. finding “the worst” current locations, if one school should be closed-down) and to 
propose the construction of new facilities or the relocation of existing ones.  

In The Netherlands there are no official school districts. This means that children can 
attend whichever school that they prefer. Most parents send their children to the closest 
school unless they have some preference for an educational method.  

From a practical point of view, the school planning scenario is based on the following 
available spatial data: 
 

 location and capacity of public primary schools 
 demographic data for each neighbourhood, and   
 topologically consistent main road network data 
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For the implementation of the system a tool was built by loosely coupling free and 

open source programs/libraries. In particular, we used C# as development environment, 
the GA library developed by Samir (2006) and the SA code of Hamdar (2008). This is 
because, although GIS offers many core processing and analysis tools for LA (like 
buffers, network analyst, measuring distances, and so on), to our knowledge no GIS 
package offers a comprehensive, flexible and efficient “solver” for this kind of problem. 
The gvSIG GIS package was used to compute the origin-destination matrix (road network 
distances from the origin –demand points- to the destination –schools-). 

 
The main characteristics of our implementation can be summarized as follows: 
 it is possible to load shapefiles to delineate the study area and the basic 

administrative units (neighbourhoods in our case) as well as to spatially represent 
the location of the existing schools and, if available, the spatial distribution of the 
demand. 

 it is possible to randomly generate demand and facility points in each 
administrative unit; where the demand points represent the children living in each 
neighbourhood and the facility points indicate the new potential locations for 
primary schools.  

 It is possible to use Euclidian and network based distances.  
 It is possible to customize the objective function to either make it a capacitated p-

median problem (minimize sum travelled distances) or to make it a multi-
objective problem (e.g. minimize travelled distance while maximizing the 
matching of school preference of each child and the type of school). 

 It is possible to load a “mask” to exclude certain city areas from the analysis. For 
instance, demand and facility points cannot occur on parks, lakes, industrial areas, 
etc. 

 It is possible to export the results as a shapefile. 
 

After the optimization, three main outputs are provided (c.f. Figure 1): 
1. a spider graph visualization with the selected schools and their allocated demand 

points is provided.   
2. the total travelled distance for each selected schools. This information is valuable 

to plan future schools in areas where this distance exceeds a given threshold. 
3. The value of the objective function at each iteration (generation) and a log-file 

with the input configuration and the CPU time used. This can be used to compare 
results between metaheuristics but also to optimize their configuration parameters 
and to study the sensitivity and the uncertainty of the results. 
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Figure 1.  A screenshot of the software 
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1. Introduction 
The quantitative analysis and modelling of networks and their flows as processes of 
spatial organisation came sharply into focus in the 1960s (e.g. Chorley & Haggett 
1967) and, along with spatial cognition and navigation/wayfinding, remain on the 
research agenda for GIScience (e.g. Duckham et al. 2003). Accessibility commonly 
refers to the ease with which something or somebody can be reached, which from a 
spatial perspective also implies nearness (distance) or ease of travel. In this study, 
carried out in the context of social infrastructure planning in the UK, equitable access 
to facilities across a region shows a consistent match between supply and demand and 
can be taken as an indicator of good planning (Rosero-Bixby 2004, HUDU 2007). 
Thus measures of spatial accessibility are a means of analysing inequalities within the 
organisation of social services (Waters 2000). To provide a variable that captures 
accessibility at UK census Output Area (OA) level as an input to analyses of 
inequalities and to inform social infrastructure planning, an approach has been 
developed and tested which is less computationally intensive and overcomes some of 
the disadvantages of conventional approaches. 
 
 
2. Spatial Accessibility in Social Infrastructure Planning 
Social infrastructure in the UK normally includes: healthcare, education, community 
facilities, emergency and other essential services. In order to ensure that these services 
are delivered effectively and comprehensively, social infrastructure should be well 
planned for new developments, regeneration and in rationalising the efficient use of 
available resources. Within a planning area, inequality in local social services is 
relative, as it is increased by imbalances in supply and demand across space. Thus 
relative spatial accessibility needs to be measured rather than in absolute terms. 
Meanwhile, social infrastructure planning in UK is mainly carried out at a local scale, 
for example by Local Authorities and Primary Care Trusts (PCTs - soon to be 
superseded by GP consortia). Details of spatial accessibility in relation to relevant 
social-economic variables are thus desirable by small area geography. 

From a GIS perspective, conventional approaches to accessibility normally include 
concentric buffers and polygons of network drive/walk times around individual or 
groups of facilities. This puts the point of origin for any accessibility at the facility 
being accessed and is therefore a supply-side view. One problem with such 
approaches is transforming the zones thus produced into a variable that can be 
attached to administrative units for further analysis. A demand-side view starts with 
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where people live and estimates the distance required to access their nearest facilities. 
Recently, considerable effort have been made on travel cost calculation in order to 
achieve accurate and comprehensive measures, which at the same time lead to more 
complex and less compatible approaches. Furthermore, the use of networks for either 
view requires assumptions to be made not only of travel speeds, but mode of travel as 
the available network may differ. Some inappropriate assumptions might result in a 
poor understanding of local accessibility. For example, a study of accessibility to 
health services in Liverpool was based on the public transport network, but a survey 
showed that only 19% respondents took public transport to visit a GP. Approaches 
based on these two views can be seen in various measures for catchment profiling, 
travel impedance modelling and gravity modelling (Guagliardo 2004, Liu & Zhu 
2004). 

In current research, spatial accessibility measurement has been improved 
significantly with increasing complex methods and growing amount of detailed 
information. However, challenges remain to establish robust and flexible approaches 
for various applications and rapid ‘what-if’ analyses, which can balance a range of 
factors. In this study, a new variable is developed to measure the spatial accessibility 
by small area geography for social infrastructure planning from the perspective of 
where people live. The new variable leads to less computational burden than network-
based methods whilst correlates well with them. By using updated time series data, 
local organisations are able to monitor and analyse spatial accessibility locally in a 
timely manner. 
 
 
3. Average Weighted Distance by Small Area Geography 

A new variable – called average weighted distance (AWD) - is tested for 
measuring the relative inequalities in spatial accessibility to local social services/ 
facilities. It is based on the average distance of residents to a nearest facility by small 
area geography and further weighted by population distribution. No assumption is 
made for the new variable about travel mode. OA is chosen as the basic geographic 
unit, as it can be associated with many demographic and socio-economic variables. 

Population distribution can exert significant influence on spatial accessibility 
measures (Langford et al. 2008). However there is a lack of up-to-date inter-census 
information about population distribution by small area geography. For each postcode 
unit, OS CodePoint provides a geographic delivery centroid as well as the number of 
domestic deliveries. This is used as a proxy of population distribution within an OA.  

AWD is developed to measure the relative spatial accessibility for social 
infrastructure planning. It intends to compare the ease of travel rather than the exact 
travel cost. For rapid appraisals, a measure with less computational load will be 
preferred, if it correlates well with more complex distance measures. In GIS there are 
three measures of distance that are readily computable: Euclidean, Manhattan and 
network distance. The network distance can be taken as is (network geometry), or 
further refined to reflect impedances such as speed limit, congestion level (attributed 
network). Our study shows very strong correlation between Euclidean and network 
distances at OA level for both urban and rural districts (see case studies below). 
Euclidean distance is therefore adopted for AWD. The general principle for AWD is 
expressed in equation (1). Fig. 1 illustrates how AWD is derived within an OA. 

( )
OA
ddp

P
F

P
ddp
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DW
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=                                                (1) 
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where: 
        = OA average weighted distance to a facility 
        = Euclidean distance from postcode centroid to nearest facility 
        = weight equal to the number of domestic delivery points within each postcode 
        = total number of domestic delivery points for the OA 
 

 
 

Figure 1. Deriving AWD for an OA (boundaries and postcodes Crown Copyright). 
 
 
4. Case Studies 
Two case studies have been carried out to investigate the feasibility of the new 
approach. Two case study areas are selected: Haringey is an inner London borough 
with high density urban population and Uttlesford is a rural district with small towns 
and dispersed villages and hamlets. Pharmacies were selected as the facility for 
modelling accessibility. To avoid boundary problems in the calculations, a buffer area 
is included for both districts. OS Integrated Transport Network is used for the network. 

As illustrated in Fig. 2, Euclidean distances can be rapidly calculated using GIS 
whilst network distances need more editing and higher computational loads. The exact 
lengths are of course different for average weighted Euclidean and network distances. 
The median percentage difference is 28% (130m) for Haringey and 21% (670m) for 
Uttlesford. However, there are strong correlations between these two types of distance 
measures where coefficient is 0.936 for Haringey and 0.981 for Uttlesford (see Fig 3 
for regression models). Such strong correlation supports the concept that AWD based 
on Euclidean distance can provide an acceptable relative measure, which aims to 
develop a straightforward measure for rapid assessments. A visual comparison of the 
results is given in Fig 4. This shows the relative inequalities in accessibility to a 
pharmacy. Thus if a local GP consortium wishes to evaluate filling the gaps in 
accessibility to commercial pharmacies, it can rapidly ‘what-if’ model additional 
pharmacies attached to existing surgeries. 
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(a) (b) 

(c) (d) 

Figure 2. Distances from Code Points to nearest pharmacies (a) Euclidean distances 
for London Borough of Haringey, (b) Euclidean distances for Uttlesford District, (c) 
network distances for London Borough of Haringey, (d) network distances for 
Uttlesford District (data Crown Copyright). 
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Figure 3. Regression between average weighted Euclidean and network distances, (a) 
London Borough of Haringey and (b) Uttlesford District. 
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(a) (b) 

(c) (d) 
 
Figure 4. Patterns of local accessibility in quintiles (a) average weighted Euclidean 
distance for London Borough of Haringey, (b) average weighted network distance for 
London Borough of Haringey, (c) average weighted Euclidean distance for Uttlesford 
District, (d) average weighted network distance for Uttlesford District (boundaries 
Crown Copyright). 
 
 
5. Conclusion 
A new variable – AWD - is developed to measure and analyse spatial accessibility by 
small area geography. It will support rapid assessments of inequalities and ‘what-if’ 
analyses in local social infrastructure planning. The approach can use both Euclidean 
distance and network distance using postcode centroids as the atomic spatial unit. 
However, it is found that these two approaches have a high correlation and therefore 
similar patterns of relative inequality. The Euclidean distance approach has less 
computational load and is generally applicable, particularly where rapid ‘what-if’ analyses are 
required for decision support in a planning context. Local organisations are then able to 
interpret and further analyse relative local spatial accessibility for specific services/facilities 
as well as monitor changes in accessibility over time.  
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1. Introduction 

 
A model is a representation of reality, so sensitivity testing is obligatory to establish credibility in 

complex models (Clarke, 2004). The success of a model is defined by how well its simulated 

maps match with the known maps (Pontius and Schneider, 2001). Sensitivity testing becomes 

more important when the models are used for decision making purposes. The present study uses 

a popular land use change model called SLEUTH to investigate the temporal sensitivity of the 

forecast maps. The objective of the study is to investigate – (a) the trend of uncertainty of the 

forecasted images from immediate future to distant future; and (b) the impact of prediction date 

range on the accuracy of the output images.  

SLEUTH is a cellular automata model of land use change and has been applied 

extensively in geographic simulation of future planning scenarios (Clarke and Gaydos, 1998; 

Clarke et al., 2007). The model is a tightly coupled blend of two cellular automata models: 

Clarke’s Urban Growth Model (UGM) and the Deltatron land use change model. It uses 

weighted maps of slope, land-use, exclusion, urban extent over time, transportation, and a hill-

shaded backdrop used for visualization as inputs, divides the study area into square cells, and 

applies from year to year in sequence a set of CA rules that determine whether or not cells will 

change from non-urban to urban land use or among other land uses. Behavior of the CA is 

regulated by five parameters that control diffusive growth, outward spread, the degree of new 

center creation, and the influence of roads on the growth pattern.  
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2. Study Area and Data  

Gorizia is a small town on the Isonzo River at the foothills of the Italian Alps, astride Italy’s 

northeastern border with Slovenia. The study area covers 23 sq.kms of area covering the Italian 

city of Gorizia and its Slovenian counterpart called Nova Gorica (including the settlements of 

Solkan and Nova Gorica in the north to Sempeter in the south).  

 

 

Figure 1: Gorizia, Italy and Nova Gorica, Slovenia - the study area 
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For modeling purposes, SLEUTH requires a minimum of a slope layer, hillshade layer 

(for background visualization), 2 land use layers, 4 urban layers, 2 transportation network layers 

and an exclusion layer. The exclusion layer is included in the model to restrain urban growth in 

areas where it is not possible to urbanize (for example, water bodies and protected areas). Details 

about the data preparation can be found in the model website 

(http://www.ncgia.ucsb.edu/projects/gig/v2/About/dtInput.htm). Iimages from Landsat 5 TM 

1985, 1991, Landsat 7 ETM+ 1999 and Aster 2004 were used as urban layers, 1985 and 2004 

images were used for the land use layer and 1968 and 1998 maps for the transportation layer. 

The transportation network was weighted according to the class of the road. The classified 

images of Landsat 5 TM 2005, 2006, 2007, 2009 and 2010 were used for validation of the 

predicted images. Classification accuracy of the data is provided below: 

 

Image Overall accuracy (%)  Kappa Coefficient 

1985 86.20 0.80 

1991 64.14 0.47 

1999 75.51 0.63 

2004 84.40 0.75 

2005 88.40 0.83 

2006 86.34 0.79 

2007 88.89 0.83 

2009 91.56 0.87 

2010 91.19 0.87 

Table 1: Classification accuracy of input data 

 

3. Methodology 

After rigorous calibration of the SLEUTH model using the data, the best fit parameter 

values were used to run a prediction to 2040 for the region. To fulfill the first objective, the 

accuracy of the forecast images (urban area) of 2005, 2006, 2007, 2009 and 2010 were validated 

against the observed map of those years. For the second objective, the prediction was run with 

the same set of parameters for 3 additional prediction ranges: 1970 – 2040, 1985 – 2040, and 

2000 – 2040. The forecasted images of 2010 from all the predicted ranges were then validated 
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with the observed map of 2010 and compared against each other. Presently, the model uses the 

last input urban layer as the start date for prediction run. The urban and road images used to 

initialize growth during prediction are those with dates equal to, or greater than, the prediction 

start date. If the prediction start date is greater than any of the urban dates, the last urban file on 

the list was used. Similarly, if the prediction start date is greater than any of the road dates, the 

last road file on the list was used. The prediction run terminated at the prediction stop date 

(http://www.ncgia.ucsb.edu/projects/gig/v2/About/data_files/scenario_file.htm).  

Validation was performed independently, using Kappa coefficient analysis in the Map 

Comparison Kit (MCK), (RIKS and MNP – RIVM, 2004) (Visser and Nijs, 2006). The Kappa 

statistic is computed from a confusion matrix derived from cell-by-cell comparison of the 

observed map and the predicted map (Hagen-Zanker and Martens, 2008).  Kappa is based on the 

percentage of agreement is corrected for the fraction of agreement that can be expected by pure 

chance. Klocation (Pontius, 2000) compares the actual success space to the expected success rate 

relative to the maximum success space given that the total number of cells of each category does 

not change (Pontius, 2000). Khisto, according to Hagen (2002a), is an alternative expression for 

the similarity of the quantitative model, based upon the total number of cells taken in by each 

class and can be calculated directly from the histograms of two maps. Kappa, KLoc and KHisto 

are connected through the multiplicative relation: Kappa = KLoc*KHisto (Visser and de Nijs, 

2006). According to Landis and Koch (1977) the kappa indices can be discretely interpreted in 

the following way: < 0.00 = poor; 0.00 – 0.20 = slight; 0.21 – 0.40 = fair; 0.41 – 0.60 = 

moderate; 0.61 – 0.80 = substantial; 0.81 – 1.00 = almost perfect.  

 

4. Results and Discussion 

In the first test, we compared the accuracy of predicted urban images from 2005 till 2009 to find 

out the trend of uncertainty over time. The results show that all types of Kappa values, from the 

years 2005 to 2009, are within the class range 0.81 – 1.00 that means the prediction results are 

‘almost perfect’.  
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Figure 2: Decrease in accuracy of the predicted images over time 

Only the Kappa coefficient of 2010 goes down to 0.78 which is in the class of ‘substantial’ 

accuracy though Kloc and Khisto for that year remains in the ‘almost perfect’ class. As expected, 

2005 has the highest level of agreement whereas 2010 has the least. Interestingly, for Kappa and 

Kloc there is a decreasing trend of accuracy but for Khisto after the immediate decrease in 2006, 

it remains almost similar until 2010 with only a little deviation. Figure 2 also shows that the 

quantitative similarity between the predicted and the observed images is higher than the 

locational similarity of the corresponding years. It can be seen that the overall Kappa coefficient 

value decreases at a constant rate as we go more in the distant future, thus it can be claimed that 

the forecasted images till 10 years from the predicted start date are still within the tolerable levels 

of accuracy.  Beyond 10 years, the future prediction becomes more uncertain. 

In the second test, we can see that with the change in prediction start date, the accuracy of 

the 2010 forecast map decreases. So the prediction start date has significant impact of the 

accuracy of the predicted images. 
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Figure 3: Trend of accuracy of the 2010 image when the prediction start dates are altered 

 

A comparative analysis of the 2010 forecasted map across all prediction date range show that the 

ones starting from 1970, 1985 and 2000 overestimate the percentage of urban pixels in respective 

2010 images whereas the 2004 prediction start date underestimates the percentage of urban 

pixels.  

 

Figure 4: Overestimation/Underestimation of the percentage of urban pixels 

 

 At present, each model run is completed in a Monte Carlo fashion 

(http://www.ncgia.ucsb.edu/projects/gig/v2/About/data_files/scenario_file.htm). For calibration, 

measurements of simulated data are taken for years of known data, and are averaged over the 
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number of Monte Carlo iterations. The averaged values are compared to the known data, and 

multiple coefficient measures are calculated, the product of which gives us the Optimum 

SLEUTH Metric (OSM) (Dietzel and Clarke, 2005). The set of coefficient values having the 

highest OSM from the final calibration are considered as the ‘best-fit values’ and were used to 

initiate each simulation in a prediction run along with the SLEUTH images and a random seed 

value. After a simulation is complete, the initializing seed that began that simulation was reset 

and a new simulation was run 

(http://www.ncgia.ucsb.edu/projects/gig/v2/About/bkStrPrediction.htm). Thus in the first three 

cases, when the prediction start dates are in the distant past, with the  average rate of growth of 

20 years, the model overestimated urbanization for 2010 whereas when the prediction is from the 

‘present year’ the model underestimated urbanization in 2010. This shows that in reality that 

region experienced significant fluctuations in the rate of urbanization and at present the growth 

rate is higher than the average. 

  The SLEUTH land use change model uses structure and form of the land use classes to 

capture the dynamics of the land use system. Goldstein et al, (2004) estimated that SLEUTH can 

be run for forecasts of urban extent for a time period as long as the historical data, in their case 

70 years.  

 

Figure 5: Uncertainty in urban models over time. In (a), only data for the present are included. 

For (b), three historical data sets are included in the modeling. 
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On the other hand, Candau (2000) showed that the accuracy of output data will increase with 

maximum amount of input data from immediate past.  For long term prediction, these results can 

only be true if the process creating the pattern remains constant throughout the prediction range, 

which is unlikely. The present study shows that to maintain a reasonable level of accuracy, it is 

best to forecast the near future than the distant one, which resonates in time the first law of 

Geography by Tobler - ‘Everything is related to everything else, but near things are more related 

to each other’.  
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1. Introduction  

Accessibility, understood as the ability of people to reach and participate in activities 

(Garb and Levine 2002), is increasingly identified as a key criterion to assess transport 

and land use policies (Bristow et al. 2009). Comparison of car and transit accessibility is 

considered more important than ever, from an environmental and social perspective 

(Benenson et al. 2009).  

Most large-scale accessibility analyses in the literature measure accessibility at the 

level of neighborhoods or traffic zones and use rather rough estimates of travel time (e.g., 

Shen 1998; Blumenberg and Ong 2001; Hess 2005; Kawabata and Shen 2006; Kawabata 

2009). This may be sufficient for car accessibility, but for transit accessibility an accurate 

assessment of travel time requires geo-information at the resolution of buildings and road 

segments in order to accurately incorporate access, egress and waiting times in the 

measurement of total travel time.  

2. Urban.Access2, the tool for high-resolution analysis of 
transport accessibility   

We present Urban.Access2 – the novel and practically applicable tool for a high-

resolution comparative analysis of accessibility at a large scale. Urban.Access2 is a GIS-

SQL-server application for estimating car-based and transit-based accessibility to 

employment and other land uses. It combines GIS-abilities of the initial version of 

Urban.Access (Benenson et al, 2010) with the novel ability of estimating accessibility at 

resolution of separate building for large urban areas with the population of several 

millions and thousands public transportation lines of different kinds. We are not aware 

about similar tools for accessibility analysis.   

Urban.Access2 enables a detailed representation of the traveler origin and destination 

at resolution of separate building and calculations of the travel times by transit and car 

and thus makes it possible to adequately compare accessibility levels by transport modes. 

The critical advantage of the approach and the software is its high performance that is 

based on representation of public transportation lines and travels as tables of relationships 

and constructing accessibility maps with the help of the optimized SQL transactions with 

the MS SQL 2008 server. The GIS component of the system is employed for one-time 

heavy spatial pre-processing at the initial stage of analysis and for the presentation and 

analysis of the resulting accessibility maps (Figure 1). 
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Figure 1. The example of Urban.Access2 output – transit accessibility of jobs  

3. Application of Urban.Access2 for analysis of the public 
transportation system in Tel Aviv metropolitan area   

The application of Urban.Access2 to the public transportation system in Tel Aviv 

metropolitan area, with its population of 3 million, and 100,000 origins and destinations, 

300 bus lines and 3500 bus stops reveals large gaps between car-based and transit-based 
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accessibility. At average, transit accessibility of the Tel-Aviv metropolitan urban area is 7 

– 10 times lower and of the jobs there 3 – 4 times lower than accessibility with the car.  

The results found for the Tel Aviv metropolitan area show large gaps between car-

based and transit-based accessibility, which are similar to those found in USA, which is 

notorious for its poor transit network. For instance, Hess (2005) finds a car/transit job 

accessibility ratio of 1.7 to 8.2. Based on the Urban.Access2 application, we find even 

lower values for many areas than the lowest value observed by Hess (2005). We argue 

that this is not the result of a poorer transit system in the Tel Aviv area, but rather of a 

more detailed description of travel by transit in the Urban.Access2 application. Given the 

counter-intuitive finding that the results for Tel Aviv, with its relatively dense bus 

network, are largely comparable to those found in US cities, we conclude that a more 

detailed representation of travel by transit results in larger accessibility gaps. These large 

gaps can be ascribed to the distinction between direct trips and trips with transfers, to a 

detailed analysis of transit travel time at the level of individual addresses, and to the 

inclusion of both the estimated waiting time at the outset of a trip, and the walking and 

waiting times related to (bus) transfers, in the accessibility index.  

The larger gaps point to a greater need for adequate policy responses, both for 

reducing car dependence as well as for creating a more equitable transport system. In this 

milieu we analyze the new program of public transportation restructuring that has been 

started in Tel Aviv metropolitan in 2010 and estimate its advantages and limitations. 
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An accelerated urbanization has taken place in economically advanced regions of the east 

coast of China, particularly where the influence of market reforms and globalization have been 

most strongly felt. However, less is known of the urban development in West China along the 

ancient silk-road (so called West Yellow River Corridor - WYRC). The urban system there was 

originated with the thriving of silk trade and military installations, and was promoted as an 

important inland industrial and transportation base before China’s economic reforms and has 

been reenergized in recent years as an important corridor to relay economic miracles from the 

east to the west. However, the urban growth has taken a unique path deviating from what is 

commonly seen in the coastal China. The urban growth has been driven by historical heritage 

and political favoritism, but constrained by water shortage and harsh natural environment 

because this region is geographically located in the arid and semi-arid hinterlands of the Eurasia 

Continent.  The trajectory of urban growth in this region reflects dynamic complexity of coupled 

human and natural systems.  

 

This paper attempts to construct a multi-agent-based model (MABM) to explore the 

emergence of urban system in recent three decades in WYRC and the associated environmental 

constraints and socioeconomic forces underlying the urbanization process. The WYRC-MABM 

is structured to consist of three groups of agents, water agents (WAs), developer agents (DAs), 

and policy agents (PAs). WAs account for available water resource and are quantified as the 

current water quotas through the field survey, which is often adopted in regional studies of 

resource management. DAs allocate urban growth on the basis of land availability and cost and 

population growth. PAs study sustainable urban development, promote rational water utilization, 

and predict economic and demographic growths. The complex interactions of WAs, DAs, and 

PAs are maximized on the basis of the economic base theory in simulation. The total available 

water resources and the water quotas by major economic sectors at present were calculated from 

the field survey. The water quotas and their change rates by economic sectors over the period of 

2000 – 2030 were estimated on the basis of policy study of regional development goals and 

future trends of water usages and changes. Finally the water quotas and their change rates were 

integrated with regional models of demographic and economic predictions to compute 

sustainable economic development by economic sectors, and then to derive total population and 

urban population. Therefore, a sustainable urban growth under the limitation of insufficient water 

supplies in He-Xi was determined. 
 

 The simulation results over the period of 2000 – 2030 reveal that a sustainable urban 

growth could be achieved under the limitation of insufficient water supplies only if the 

urbanization level would be allowed to rise to 35.14% by 2030. This figure is just at the average 

urbanization level of China in 2001. Thus it is a challenging task for China’s governments to 

control urban growth in WYRC. 
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1 Introduction

The present abstract proposes the use of Agent-Based Complex Systems (ABCS)
to model the impact of policy decisions on Climate Change. ABCS is a powerful
and innovative technique of representation capable of modelling and analysing
the behaviour of the key actors in climate policy as well as the consequences of
their decisions.

1.1 Background

Climate Change poses a problem that should be tackled taking into considera-
tion the interaction between science and policy. Meanwhile scientists’ expecta-
tions about the emergence of the problem [7], the scope, the duration and its
plausible consequences are not completely defined. This is because the processes
involved in climate are not totally understood and the level of uncertainty is
remarkable. Based on these premises policy-makers try to design a series of
measures to mitigate causes and adapt societies to these possible scenarios.
However the mechanism, the speed and the priority in which this political and
social process should be developed is, in fact, an unknown factor.

Globalisation is a political convergence process where the power of decision
of each state is gradually less significant. This lack of autonomy determined by
structural constraints entails a general tendency where most policies converge
to one global policy. This is a crucial fact to understand the driving forces that
play a role in the creation of the policies.

The formulation of regulations can be based on two main goals:

• Social or ideational: responding to preferences like: social benefits,
voters, interest groups...

1
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• Economic: based on economic models like DICE [6] in which the problem
is defined as a cost-benefit trade-off and is reduced to a monetary problem.
Currently there exists a clear dominance of economic versus ideational
points of view. However, this approach by itself can be considered flawed
for analysing the problem of Climate Change [5]

The study of how these two goals can be combined and what consequences
result from this selection can shed light on how policies should be developed in
the future and hence identify the effects for climate.

Individually climate and how policies are designed, involve an enormous
level of complexity. If an observer tries to contemplate and understand how
both systems are influenced by each other it is highly important to analyse the
role of human beings. In order to understand the development of legislations
and agreements and in which way they influence and are influenced by Climate
Change, I propose the creation of a model coupling social and environmental
areas.

Agent-based models (ABM) and Cellular Automata (CA) have been used to
understand the interconnections, interdependences and feedbacks among a set
of individual entities. The capability of representing human decision-making
to achieve a determined goal and the emergence of new properties in a spatial
and temporal changing environment, make it a good model for our purpose.
ABM has been used in multiple disciplines, concretely in ecology [1, 2] and
social sciences [3] and the application of these techniques are increasingly more
common.

Nevertheless the underlying characteristics of a climate and policy decision-
making system requires dealing with a large quantity of different patterns and
behaviours. Cellular Automata has the drawback that it can deal with only one
pattern. The consequence of this is that an individual pattern is not rich enough
to describe the behaviour of a complex system. It is therefore compulsory to
search for a way of representing a higher level of complexity, taking into account
the problem that is: the more representation capability, the more complexity in
structure and computation.

2 The Proposed Model

I propose to increase the representational power of ABM-CA using Agent-Based
Complex Systems (ABCS) & Pattern-Oriented Modelling POM [4]. Both tech-
niques constitute a more powerful and comprehensive point of departure. Taking
observed patterns in nature as a starting point[8], the created model should be
capable of mimicking the internal organisation of the system.

2
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Instead of representing all the knowledge in a unique physical layer the
system will be made up of a set of layers. Each layer represents a different
area of interest and can interactuate with other layers in order to reproduce
complex phenomena. These layers could cover:

• Geography: the physical division of countries with characteristics like pop-
ulation, level of development...

• Economy: The boundaries among countries are more and more fuzzy due
to globalisation. Countries tend to group and behave according to a com-
mon set of rules given by treatments, agreements.

• Each region can have different areas of influence according to possible
factors like language, history, political regime, religion...

• Ecology: climate, biodiversity, ecology concern....

Each heterogeneous agent has associated a set of characteristics according
to the different layers where it is located. Each level can show independent
or grouped behaviour that can be conditioned by the characteristics of other
layers. Its goal can be subdivided into different parts according to these layers
and could be modified by other agents according to its level of autonomous be-
haviour. In turn, its decisions can have different levels of repercussion in other
agents with respect to its area of influence.

2.1 Potential Benefits

With the outcomes gathered from the agents in form of CO2 emissions, the
system will be able to evaluate future climatic responses studying the scenarios
constructed by the IPCC [7]. Scenarios are defined by a range of greenhouse
gas thresholds in the atmosphere. If our model concludes that in 10 years the
increment of CO2 will give rise to a 1.8 degree growth in temperature, then
we are in the scenario called B1 and the IPCC can give us information about
what are the most plausible consequences for the environment. With these data
the system can correct its behaviour relaxing or strengthening the regulations
in order to control the future effects of Climate Change. With this exchange
of information the system will trace the steps for possible future scenarios.
Exploring different suitable paths can help us to understand the essence of the
interconnection between these two systems.

3
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2.2 Methodology

Reality cannot be totally formalised. The key goal of modelling is to find the
appropriate level of aggregation that allows us to synthesize an effective solution.
Each additional degree of freedom represents a remarkable increment in the
efforts to structure and understand the model.

The designed architecture allows us to start from a coarse model that repre-
sents a simple pattern observed in nature and studies possible mechanisms that
give rise to these patterns. Each layer will be treated independently in a pre-
liminary phase as an independent component of the model. By an incremental
approach the model is refined and rechecked for each pattern included. When
a layer’s definition process finishes, an interconnection phase will be carried out
by the inclusion in the model of patterns that interconnect more than one layer.
Deciding the layers involved we can expand the model until achieving the com-
plexity desired.

Attributes determine the decision-making behaviour of agents along with
their strategies and goals. The application of reinforcement learning or genetic
algorithms techniques will be used to measure closeness between actions and

4
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goals and minimise this distance.

2.3 Testing

This phase will be accomplished from two points of view:

• Sensitivity and error analysis. This will be carried out by the analysis of
simple and hierarchical relationships between input and output parameters
of the model.

• Exploring the model structure by performing a set of comparative exper-
iments about realistic and unrealistic scenarios from the past, focusing in
the way that the outcomes are determined by the assumptions considered
and how the model is simplified and refined.
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1. Introduction  
Alberta woodland caribou (Rangifer tarandus) are classified as threatened in Canada, and 
a local population in the province’s Foothills Region, the Little Smoky herd, is at 
immediate risk of extirpation due, in part, to anthropogenic activities such as oil, gas, and 
forestry that have altered the ecosystem dynamics. The Alberta government resultantly 
recommends the assessment and management of cumulative effects on caribou, as well as 
the identification and provision of adequate habitat (amount and type), to allow for 
caribou persistence (ASRD 2010). While much is known about caribou ecology, the 
behavioural mechanisms by which resource-extraction industries contribute to caribou 
population decline are less clear. Traditional approaches to studying wildlife-human-
environment interactions do not typically consider individual-level information, account 
for complexities, or integrate cross-scale and cross-discipline data and methods, resulting 
in a great loss in predictive or explanatory power (An et al. 2005). To address these 
issues, we have developed a spatially explicit, agent-based model (ABM) to simulate 
winter habitat selection and use of woodland caribou in the face of intense land use by 
resource-extraction industries in west-central Alberta.  
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 2 

1.1 Theoretical background  
The knowledge of species distribution is a vital component in wildlife conservation and 
management. Such information aids in quantifying animal–habitat relationships, 
describing and predicting differential space use by animals, and ultimately identifying 
habitat that is important to an animal (Beyer et al. 2010). In determining critical habitat 
for population persistence it is crucial to understand the mechanisms that drive animal 
movement and habitat selection as it is the adaptive responses of individuals to 
environmental conditions that give rise to population- and community-level phenomena 
from which researchers can more effectively identify habitat quality. ABMs provide an 
ideal tool for this important characteristic of ecological systems because they are 
designed to explore the mutual relationship between the adaptive behavior of individuals 
and the system-level properties (Grimm et al. 2007).  

As such, ABMs can readily incorporate two critical ecological theories involved in 
habitat selection: animal movement ecology and behavioural ecology. The movement 
paths of wildlife result from the dynamic interplay of the internal state of the organism, 
its motion capacity, its navigation capacity, and the external environment (Kolyoak et al. 
2008, Revilla and Wiegand 2008). Since agents are also given fitness-maximizing goals 
and can trade off competing strategies to find optimal solutions to the problems they face 
(i.e., behavioral ecological theory), this enables the understanding of the processes that 
govern movement, distribution, and selection, and therefore predict how animals might 
respond to habitat loss and other environmental change (Grimm et al. 2007). 

The theoretical foundation of our ABM is that caribou agents are goal driven and will 
make realistic, optimizing tradeoffs between factors constraining fitness: energy reserves, 
resource distribution and abundance, energetic cost of movement, and predation risk and 
disturbance. The decision with the highest payoff will drive animal movement and 
ultimately determine habitat selection. By bestowing ecological processes and 
evolutionary principles on caribou agents, we can identify the selection of resources that 
are truly related to animal fitness.  
 

2. Methodology  

2.1 Woodland caribou system 
We have chosen to simulate our caribou ABM during the winter, as over-wintering 
caribou face the energetic costs of food availability, environmental conditions, predator 
avoidance, and disturbance. Specifically, the availability of terrestrial lichen, the main 
food source for Alberta woodland caribou in winter, is constrained by specific habitat 
requirements (Dzus 2001); minimizing costs in winter appears important for female 
caribou, at times at the expense of increased predation risk (Johnson et al. 2002); and 
caribou reduce predation pressure by increasing the distance between conspecifics, other 
ungulates, and wolves, or by avoiding the habitat in which they are found (DeCesare et 
al. 2010). Finally, woodland caribou may also associate industrial features with high 
predation risk, or equally, perceive industrial activities as being of high predation risk in 
their own right, thus experiencing energetic costs in industrial-feature avoidance 
(Bradshaw et al. 1998).  
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 3 

2.2 Model calibration and evaluation 
The main data source used for the model calibration is a database composed of radio-
collared GPS location data of caribou (Hebblewhite and Musiani 2010). A total of 5225 
location points were obtained for 13 female individuals over the course of winter 
(November-April) 2004-2005. Using the GPS point samples, the spatiotemporal 
trajectory of each caribou was built and stored within an ArcGIS database, from which 
patterns were extracted and used to calibrate the movement behaviours of caribou: turn 
angles and daily step distributions. Other sources of biological information necessary for 
the caribou ABM parameterization include caribou agents’ internal state variables, 
bioenergetic functions, spatial memory, and learned decision-making processes. The 
values for these variables were obtained from an extensive literature review, and include 
other published agent-based models of ungulate movement and migration (Bennet and 
Tang 2006, Metsaranta 2008). Data used to spatially represent the environment comprise 
remote sensing and GIS datasets of the Little Smoky region. These data have also been 
collated in an ArcGIS database and include vegetation and land cover maps, elevation 
data, road networks, seismic lines, and locations of wells, circa 2005 (McDermid et al. 
2009, DeCesare et al. 2010). The area of interest covers 2400 km2 and represents the 
official political and biological range delineation of the Little Smoky herd by the Alberta 
Fish and Wildlife Division (ASRD 2010).  
 The ABM model is implemented in the agent-based modelling platform NetLogo 
(Wilensky 1999), and verified for proper programming functioning through progressive 
debugging and uncertainty testing. The simulated behaviours and habitat selection of the 
agent caribou are to be evaluated by comparing these data with actual caribou patterns 
extracted from the empirical data and literature sources that are not used in the calibration 
process. This approach uses multiple patterns, each describing a certain characteristic 
aspect of the real system, to verify parameterization and guide model selection (Wiegand 
et al. 2003). Patterns used to evaluate the caribou ABM comprise caribou net 
displacement, fixed kernel density estimators, use of landscape cover, and distance to 
industrial features. 

2.3 Conceptualization and implementation of the ABM  
The ABM model is composed of the following elements: (1) cognitive caribou agents, (2) 
decision-making heuristics that act to optimize the agent’s self interest (e.g., 
reproduction, bioenergetics), (3) learning rules and adaptive processes (e.g., memory of 
high quality and low risk sites), and (4) a non-agent environment (e.g., the spatially-
explicit GIS-based caribou range).  
 Three raster maps of 45 m resolution are used to represent the physical environment 
where the agents are located and interact with each other: a land-use map representing 
vegetation and land cover, a digital elevation map, and an industrial-features map. This 
resolution is chosen to represent the size of the foraging patch of caribou (Bailey and 
Provenza 2008). A virtual grid is overlaid on these three maps to provide an environment 
to the agents and allow their movement from one cell to the next cell (one of its eight 
neighbours). The environment is assigned three main characteristics: forage availability, 
energetic travel cost, and predation risk/disturbance.  
 The caribou are represented as cognitive agents: they have a mental representation of 
their environment; they can plan their activities, and have a memory of profitable 
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patches. The goal of the caribou is to maximize its fitness throughout the winter (six 
months), which is translated in the model as energy reserves. Each time step in the model 
represents one half hour. A decision model encompassing the behavioural rules of the 
caribou agents has been built (Figure 1) wherein the animal must assess its current 
energetic state and make a decision about its next action dependent on whether: 1) it has 
met its daily energetic requirements, 2) its current actions will result in enough 
accumulated energy to birth viable offspring, and 3) the risk of predation in its immediate 
surroundings is tolerable. The assortment of actions the caribou can choose range from 
resting to foraging, moving locally to a safer location, moving locally to forage, and 
taxiing to a new location or one from memory, either at low energetic cost or at low risk 
of predation.   
  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Conceptual behavioural decision model of caribou agents 

 

2.4 Model simulations 
To determine the most probable mechanism of habitat selection, we shall be simulating 
alternative caribou fitness-maximizing goals, for instance, whether caribou in winter 
attempt to meet their daily energetic requirements, maximize their reproductive potential, 
avoid predation, or a combination. These strategies are governed by caribou threshold 
tolerances for energetic reserves and willingness to accept risk/disturbance (Figure 2). 
The underlying mechanism is to be confirmed by verifying which resultant simulations of 
movement patterns most closely match actual caribou distributions and other extracted 
patterns. The results we shall be  presenting will elucidate the most common strategy 
caribou use to select their habitat, thus offering insight into why caribou are choosing the 
habitats they use, and consequently, the habitat types that are most important in 
maximizing caribou bioenergetics and fitness. 
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Figure 2. Example of behavioural trade-off flow chart of caribou agents 

 

3. Conclusion 
By capitalizing on the utility of ABMs to accommodate behavioural and ecological 
theory, we aim to show that carefully designed mechanistic models can be used to 
understand and to predict the consequences of individual behavioral responses to 
environmental conditions for population-level phenomena such as habitat selection and 
use. Our model findings will have benefits for conservation and industry-management 
purposes, serving as an applied, science-based decision tool for managing potential 
effects of resource extraction activities on valued resources.  
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1. Introduction 
In northern New Mexico, water is a scarce and precious commodity. A traditional local 
system of water management involves landowners collectively maintaining and 
managing ditches which distribute water among the properties. This system of physical 
ditches and organization together are known as an acequia, and the landowners who 
maintain it are called parciantes. The water carried by the ditches is a shared resource, 
and the complex management system of the acequia has evolved to avoid Hardin’s 
Tragedy of the Commons with regard to natural resources (Hardin 1968).  

Despite the historical strengths of acequias, parciantes are increasingly pressured to 
convert farmland into residential space. Any effort to protect this traditional form of 
agriculture relies an understanding of how the different parts of the system interact and 
how rigorous the system is to perturbation. This simulation seeks to model land use in 
acequia-dependent Taos, New Mexico. As an example of the area, fig. 1, displays a map 
of the tracts of land associated with this form of agriculture. The goal is to construct a 
tool that will allow a researcher or policy-maker to understand and interact with the 
acequia system in an intuitive fashion. Fig. 2, is an example of the simulation interface. 

 

 
Figure 1. Tracts of land owned by parciantes in Taos, New Mexico. 
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2. Methodology 
The simulation is a spatially explicit agent-based model programmed in Java using the 
MASON Simulation Toolkit (Luke et al, 2005). It is made up of modules which capture 
the physical, economic, and social processes that impact land use patterns in the Taos 
area. The model includes a series of maps showing the spatial environment, graphs which 
track statistics about parciantes and urbanized versus agricultural land use, and an 
interface which allows to user to hide layers of information or modify the parameters of 
the environment mid-run. 
 

 
 

 Figure 2. A sample run with user interface. 
 

2.1 Data 
Data utilized within the model as shown in fig. 3, comes from the work of Michael Cox 
(2010) and are supplemented with GIS information from the USGS’s EarthExplorer. The 
area of study is the county of Taos, New Mexico and its surrounding area. The 
information was processed into 30m2 raster grid cells. The land use classification utilized 
here is described in Homer’s work about the National Land Cover database (2007). 
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Figure 3. GIS data used within the model include (in clockwise order) elevation, 

urbanization, land use data, and waterways. 
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2.1 Simulation 
Acequias are a complex system, and the importance of low-level dynamics makes it 
difficult to understand the macro-trends in local development. In this simulation, water, 
land, parciantes, and real estate agents are all simulated to try to explain the turnover of 
agricultural land into urbanized, residential space as the process is impacted by the ever 
critical question of access to water. 

The propagation of water through the environment is accomplished by a network of 
rivers and acequias. Acequia links are special because acequias build up sedimentation - 
or decay the weight of the relevant water system link - every year unless they are 
maintained. A fraction of the water that flows through the decayed link is lost. An 
unmaintained section of acequia can thus eventually cut off all ”downstream” nodes from 
access to hydration. 

Land is a passive object, in that it is irrigated by the water network and cultivated by 
Parciantes. Parciantes can choose to grow various kinds of crops on their parcels of Land 
tiles, and the income from a parcel of tiles P on which a crop C is planted is given by 
equation 1. 
 

Ip = Cprice ∗ Psize  (1) 
 
The income derived from various crops is user-determined. As Parciantes hold multiple 
units of land as part of their land parcel, it is possible for one Parciante to plant a different 
crop on each of his units of land.  

Parciante agents represent the individual acequia owners who make land use and 
acequia maintenance choices in the real world. In the context of the simulation, 
Parciantes choose whether to maintain their acequias, plant crops, and sell their land. 
They have a number of attributes, including a set of Land tiles, a sum of money, and a 
’strategy’. The money attribute reflects agent resources, and if its value dips below a 
certain level the Parciante is forced to sell his land to any bidder. Money is expended 
when the agent helps maintain his acequia: the cost is a function of the length of the 
acequia A and the number of Parciantes N as shown in equation 2. 
 

C = Alength/N   (2) 
 
To reflect the importance of cultural heterogeneity and personal preference in these 
decisions, Parciante agents are further endowed with a ’strategy’ that defines their 
approach to land use decisions. One example of such a strategy is the Traditionalist, who 
values his land and will hold onto it as long as his money holds out. A different strategy, 
the Sheep, leads the Parciante to observe what his neighbours are doing, and emulate the 
behaviour of the majority. 

Real Estate Agents represent the rising demand for housing in the area, and their goal 
is to buy and develop as much land as possible. These agents are endowed with a certain 
budget and make offers to individual Parciantes. The offer prices follow the model of 
Filatova et al. (2009), that given an agent with budget B bidding on a parcel with 
transport cost T (proportional to the distance of the parcel from the road), the utility U is 
a function of the amenity A (here, the parcel size) and normalized distance from the 
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economic centre P weighted by a factor b. The offer price O is thus determined by 
equations 3-5.  
 

Y=B−T   (3) 
U = AαPβ   (4) 
O = Y U2/(b2 + U2)  (5) 

 
If the Parciante agent accepts the Real Estate Agent’s offering price, the parcel of land is 
urbanized and the Parciante removed from the simulation. The distribution of Real Estate 
Agent budgets is determined by the user and can be modified mid-run. Fig. 4, sketches 
out the interactions between the agents in the simulation. 
 

 
 

Figure 4. A flowchart of interactions between different kinds of agents. 
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3. Results  
We have only begun to explore the vast range of experiments that the model presented 
here can represent. Verification has been completed and advanced validation is underway 
and will be presented at the conference. 

The model was built in an iterative fashion, ensuring that each of the submodules 
demonstrates the appropriate behaviour over the space of inputs it can accept. The water 
network, for example, was tested by deactivating all of the Parciantes and allowing the 
acequias to go unmaintained for several decades as shown in fig. 5. As for validation, the 
land use output of the model looks reasonable upon inspection, but we plan to extend the 
validation process further by comparing it with the real land use patterns of the area 
derived from land cover data collected in 2008 using the Map Comparison Kit (Visser 
and de Nijs, 2006). 

 
Figure 5. A view of the water network link weights at the beginning (left) and 

after 30 years of neglect (right). Darker links are stronger. 

4. Conclusion 
The model presented here uses empirical GIS data to build a realistic model of a complex 
socio-physical system. By representing the interacting physical, economic, and social 
processes, the interconnected nature of the acequia system is more precisely represented. 
It is the authors’ hope that this model will be used by researchers seeking to answer 
questions about the rigorousness of this community resource management system, its 
specific strengths and critical weaknesses, and how to protect this traditional way of life. 
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1. Introduction 

Police data on the number of traffic accidents clearly point to the "Black Spots", 

where the accident rate remains high in months and years. However, road safety 

research is still far from understanding why certain road locations are risky.  

Essentially, we lack the knowledge of how pedestrians and drivers interact when 

facing a potentially dangerous traffic situation and, most important, the integrated 

framework that relates the data on human behavior to the real-world traffic situations. 

So far, road safety is studies with the general purpose traffic simulation models 

extended towards including conflict statistics. This approach, however, is inherently 

limited. The dynamic road safety model should incorporate the variables that are 

critical for road incidents but superfluous for simulating general traffic: the 

characteristics of mechanical and functional characteristics of vehicles and in-vehicle 

systems and, especially, the rules of drivers’ and pedestrians’ behavior, including 

drivers and pedestrians awareness and reaction to each other (Gettman and Head, 

2010).  

We present safety oriented high-resolution spatial micro-simulation model of car 

and pedestrian traffic that enables direct simulation of the road accidents and 

associated risks. 

 

2. SAFEPED Simulation Environment 

To represent the dynamic reality at the Black Spot and merge it with the experimental 

data on drivers’ and pedestrians’ behavior we have developed SAFEPED - Multi-agent 

environment for spatially explicit microscopic 3D simulation of the Black Spot 

dynamics. 

SAFEPED serves as a testbed for evaluating experimentally estimated drivers' and 

pedestrians' behavioral rules and estimating accident risks in various traffic situations. 

It aims at analyzing disadvantageous environmental design at the Black Spot and 

assessing alternative architectural solutions there.  

The major features of the SAFEPED are as follows: 

- SAFEPED agents are autonomously behaving pedestrians and drivers who see 

and estimate the 3D-movement of the other agents and react in response once in 

0.04 sec; 

- SAFEPED agents see each other in 3D and behave based on the 3D visibility  

- The user defines the properties and goals of movement of the drivers and 

pedestrians participating in the traffic episode; 

- The rules of agents' behavior are based on the experimental data, obtained from 

the videos, including the videos captured at the investigated Black Spot. 

- SAFEPAD is validated based on the multi-view video footages. 
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During the simulation, SAFEPED records the full life-history of every agent, 

including all crash and near-crash episodes. The user can analyze the crash and near-

crash statistics, rewind and replay the simulation starting from any moment of time, 

observe accidents from various viewpoints, including the viewpoints of the crash 

participants (Figure 1). The user can also intervene into the model dynamics by taking 

the full control over one or more agents. To represent the risks of the accidents, 

SAFEPAD applies indicators describing the conflicts between traffic participants, 

such as Time-to-Collision (TTC) and Post Encroachment Time (PET) (Morsink, 

2008).  

The paper presents the SAFEPED and the results of investigation of several 

accident scenarios. 

 

 
  (a)    (b)    (c) 

 

Figure 1. SAFEPAD traffic episode from the viewpoint of (a) drivers participating in 

the episode; (b) outer pedestrian located close to the episode; (c) outer pedestrian 

located far from the episode 
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1. Introduction  
The US Gulf states are constantly hit by hurricanes, causing widespread damage resulting 
in economic loss and occasional human fatalities. Much of the existing research is 
focused on devising models that predict where hurricanes are likely to hit in the future. 
These models typically create what are called hurricane climatologies of given 
geographic areas, and are built from data on storm intensity, size, and return rate from 
past events, in addition to climatic variables that are known to be favourable for hurricane 
activity (Jagger et al. 2001, Elsner and Jagger 2006, Landsea et al. 2006). However, 
hurricane climatologies frequently omit information on the spatial patterns of hurricane 
movement. In other words, data on the linear tracks that hurricanes take are seldom 
incorporated. A more complete spatial hurricane climatology would improve our 
understanding of the temporal frequency of hurricane events and hence their propensity 
for further hurricane occurrence. 

1.1 Hurricane tracks  
The hurricane tracks that would be used to build a spatial hurricane climatology are 
recorded by the National Hurricane Center (NHC) in Miami, Florida. They are initially 
plotted as individual points, which can later be connected in chronological order to form 
a linear track. From a geocomputational standpoint, these tracks are essentially one-
dimensional polylines, fixed with starting and end points corresponding to the hurricane’s 
origin as an organized storm and ultimate dissipation, respectively. And as linear 
polylines the tracks can be analyzed when searching for spatial patterns, in particular the 
relative frequency. One way to measure this is to calculate an average track by 
combining an entire set of polylines that represent past hurricanes for a given geographic 
area. The average track would represent not only the most frequented path of past 
hurricanes but also a probable path for future hurricane activity. 
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1.2 Average track  
The calculation of an average hurricane track using polylines may at first appear trivial. 
Yet it is absent from the meteorological literature. One geocomputational technique is to 
first create distance surfaces for each polyline that represents an individual hurricane 
track. Distance surfaces are isotropic surface interpolations that represent regular 
Euclidean distance intervals and are very much akin to regular-interval buffering 
techniques in most GIS software packages (Hirata 1995). The procedure is illustrated by 
fig 1. Three polylines have a range of [0,1] and a value x at every 0.01y – this is where 
x=y+a, and where a is normally distributed with mean of 0 and standard deviation of 0.1 
(fig 1a). The Euclidean distance maps are then generated for each of the polylines, 
resulting in the calculation of isolines or buffer zones that represent inverse distance 
radiating from the entire length of the polylines in units of x (fig 1b). 

The next stage is aggregation of all three polyline distance surfaces, and involves the 
calculation of composite isolines based on the average of the three—an inverse distance 
weighted (IDW) spatial analysis procedure implemented by a union function (fig 1c). The 
outcome is that every point on the composite map is the product of the average value of 
all three distance surfaces; mathematically, a value of some number v indicates that the 
three polylines are, on average, v units of x away from that point. For instance, shorter 
distance values have the most agreement between the polylines, and a value of zero 
means that all of the polylines intersect at that point. 

The last stage is for a new polyline to be digitized along the center of the isoline with 
the lowest composite distance–this is considered the average polyline (fig 1d). And is 
essentially the least-cost route, if the composite distance map was to be viewed as a 
typical cost-density surface. A decision must also be made on the range of the polyline; 
i.e. the start and end points--what approximate linear range of y values does the average 
polyline make sense? This is not always a straightforward case with physical phenomena 
such as hurricanes where their precise beginning and end are less well-defined and 
variable. 

 

 

 
 

Figure 1. Polyline averaging using distance surfaces: a) three polylines representing 
hurricane tracks, b) distance surfaces for each polyline where isolines represent radiating 
distances from the polyline in units of x, c) inverse-distance weighted average distance 

map, d) average polyline (black), and the original set of polylines (grey). 
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Figure 2 

 
Distance mapping allows all tracks to be averaged, regardless of intersections or parallel 
points (similar latitudes). Moreover, the procedure works for two or more lines in the 
same spatial plane. We explored kernel density estimation using points (remember, the 
hurricane tracks are polylines connecting hourly observations) but because hurricanes 
move at different speeds points are recorded at irregular intervals (they tend to cluster for 
slower hurricanes). Using only latitude and longitude was also unacceptable, because 
hurricanes have different start and end points, and some even cross one line of latitude 
multiple times.  

2. Hurricane track averaging: the case of Galveston  
The averaging method can be illustrated by an example from the city of Galveston in 
Texas, USA (fig 2). Known for its vulnerable location, ten major hurricane tracks (wind 
speeds >50 m s-1) that passed within 100 km between 1851 and 2009 were accessed from 
the HURDAT dataset (NHC) and from a qualitative archival collection (Chenoweth 
2006, Scheitlin et al. 2010). Distance surfaces were generated for each of the ten tracks 
and then combined to calculate the average (fig 3). In addition, the IDW assumption is 
modified by a distance-decay parameter to adjust for diminishing importance with 
increasing distance (darker tracks in fig 2 represent hurricanes that passed closer to the 
city). The formula for the average distance map D(s) is now: 
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 Figure 3  

 
Figure 4

3. Conclusions  
The Galveston example produced a single distance weighted average track (fig 4) that 
represents the most likely path future hurricanes may take. This is important for many 
reasons. Firstly, it marks the most vulnerable coastal strips that may be damaged by 
hurricanes; this in itself is priceless for helping develop effective mitigation policies. 
Secondly, from a computationally reductionist standpoint, an average track, like all 
averages, condenses multiple tracks into a convenient single-track summary. And like all 
averages, the more observed frequencies the stronger the relevance and confidence of the 
average. In a sense it is also a means for visualizing simple trends from complex data. 
Thirdly, the averaging technique adds the spatial component to existing hurricane 
climatologies and predictive models, and this in turn provides a more complete 
framework with which to study the climatic factors responsible for fuelling hurricane 
activity. And lastly, the calculation of an average may also be used to augment, 
strengthen and to complete historical records by helping fill gaps in missing years. 

Possible improvements to the polyline averaging method include estimating some 
degree of error, where uncertainty information would be obtained from polyline 
similarity testing (Kuijpers et al. 2006). This is where similarity between the whole set of 
polylines would provide information regarding the relevance of an average polyline. If 
the polylines have little similarity then the average polyline may not have as much 
physical relevance. Once an average polyline is created, polyline similarity testing can 
provide information about the difference between the average polyline and the original 
set of polylines. Calculating the standard distances from the average polyline to the 
polyline set is another way to obtain similar information. Such testing should also help 
determine a reasonable range of values within which the average polyline is finally 
digitized. 

In terms of portability, polyline averaging serves an immediate purpose for 
summarizing hurricane tracks. But it also may be relevant for other severe atmospheric 
phenomena as well as animal migratory patterns, and maybe even traffic and pedestrian 
flows. 
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1. Introduction  

The close connection between pollution concentration, exposure, toxicity, and public 

health (US EPA 1989, 1997) makes estimating a pollution source's impact on a 

community a vital task in environmental health.  Two common methods of estimating 

this impact are 1) considering locations in the same areal unit as a pollution site as 

exposed (e.g., Croen et al. 1997) and (2) considering locations within a buffer around the 

pollution site as exposed (e.g., Kearney and Kiros 2009).   

Three concerns arise in these methods.  Each has been addressed individually, but no 

national-scale study has addressed all three.  The first concern is the Modifiable Areal 

Unit Problem (Openshaw 1984), which has been addressed by using raster cells instead 

of census units (Mennis 2002, Mohai and Saha 2006).  Second, what is the mathematical 

function relating distance from a site and that site's impact?  Many studies treat this as a 

flat surface; if a person is within the buffer, they are at risk.  Other studies measure risk as 

the distance to the nearest site (Mohai and Saha 2006).  This distance-based approach 

recognizes that a site's impact decays with distance.  However, a simple distance measure 

ignores the volume and toxicity of the chemicals released at that site.  Therefore, we want 

a model incorporating the distance from the pollution site and the volume and toxicity of 

the chemicals released.  Only Cutter et al. (2001) use such a model within the 

environmental justice literature.  Spatial interaction models from economic geography 

(Sen and Smith 1995) can meet these requirements.  The third concern is anisotropy.  

Most distance-based studies treat all directions as equivalent, although this is unrealistic, 

as prevailing winds carry pollutants further downwind.  Studies using site-specific 

atmospheric models (e.g. Fisher et al. 2006) account for this, but no nationwide study 

accounts for anisotropy.   

This research combines a raster-based analytical approach with different anisotropic 

spatial interaction models to more accurately estimate the population at risk.  We use 

LandScan USA © data from Oak Ridge National Laboratory (Bhaduri et al. 2007), which 

estimates daytime and nighttime population of the continental United States at a 90-meter 

grid resolution.  We calculate the risk at each LandScan grid cell using a series of 
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increasingly complex spatial interaction models in which each added step addresses an 

additional concern. 

2. Data  

Our health data are lung cancer age-adjusted mortality rates from 1990 through 2006 

provided by the US National Cancer Institute’s Surveillance Epidemiology and End 

Results (SEER) database.  Our pollution data are airborne releases of lung carcinogens 

identified in the EPA's IRIS (Integrated Risk Information System), HEAST (Health 

Effects Assessment Summary Tables), and PPRTV (Provisional Peer Reviewed Toxicity 

Values) databases.  We include all releases in the continental United States from 1987 

through 1996 in the US Environmental Protection Agency's Toxic Release Inventory 

(TRI) database.  The TRI data period ends before the health data period to reflect a lag 

time between chronic exposure to toxic chemicals and lung cancer development.  We use 

covariates listed in table 1 from the 1990 US Census and other sources.  The final dataset 

is the nighttime population from the LandScan USA dataset. 

 

 

percent with no high school degree smoking rate 

percent with college degree physicians per 1000 residents 

poverty rate spatial indicator: South 

unemployment rate spatial indicator: Midwest 

percent non-white spatial indicator: West 

percent male spatial indicator: Appalachian 

 

Table 1. Demographic and behavioral covariates used in regression analyses. 

 

3. Methods  

We develop and analyze four risk datasets with increasing complexity.     

1) The first set uses simple models given in equations 1-4, which respectively give a 

buffer, Cutter et al. (2001)'s decay formula, a power-based spatial interaction model, and 

an exponential spatial interaction model.  In the equations, liz is the impact of pollution 

site i on location z, ri is the release volume at site i, diz is the distance from site i to 

location z, and , , and T are model parameters.  We evaluated a range of values for 

each parameter. 
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We incorporate anisotropy by using wind speed and direction to transform the distance 

values in these equations.  The three transformations are shown in fig. 1.  This initial 

dataset assumes a constant wind speed and westerly direction for the entire country.  

Mathematical details are available from the first author.  We test these three 

transformations and no transformation. 

  

 
 

Figure 1. Three models of anisotropy: the blue circles are the untransformed isotropic 

distances and the red shapes are the transformed distances. 

 

2) The second set uses Inhalation Unit Risk values from the IRIS, HEAST and PPRTV 

databases to assign chemical-specific  parameters.   

3) The third set uses climate data from the National Climate Data Center to vary 

speeds and directions for prevailing winds by location.   

4) The fourth set uses chemical weight values from the IRIS, HEAST and PPRTV 

databases to assign chemical-specific  parameters. 

Each set of risk estimates are analyzed in multivariate ordinary least squares (OLS) 

and spatial error regressions using the mortality rates as the dependent variable and the 

covariates and spatial interaction risk estimates as independent variables.  The regressions 

are conducted in R. 

 

4. Results and Discussion  

Table 2 shows the AIC values and parameterizations of the OLS and spatial error 

regressions that minimize the AIC.  Parameters values with an asterisk were subsequently 

modified on a chemical-by-chemical basis.  As the table shows, the best parameterization 

was consistent across both regression models and all four datasets.   
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 Set 1 Set 2 (add 

toxicity) 

Set 3 (vary 

winds) 

Set 4 (add 

mole-cular 

weights) 

OLS AIC 22361.63 22823.70 22806.41 22794.90 

Spat. Err. AIC 22357.75 22817.37 22798.24 22786.15 

 2.5 2.5* 2.5* 2.5* 

 1.0 1.0 1.0 1.0 

T 100 100 100 100* 

anisotropy parabola parabola parabola parabola 

decay function buffer buffer buffer buffer 

 

Table 2. OLS and spatial error regression results. 

 

The spatial error regression outperformed the OLS regression.  Varying the wind 

speed and direction (set 3) improved over set 2, and using the molecular weight to vary 

the  parameter provided further improvement.  However, the AIC was optimized with 

the simplest risk estimation model.  Additional examination is needed to ascertain why 

this happens.  Similarly, the simplest spatial decay function, a buffer, performed the best.  

Lastly, comparing these results against those in Conley (2011) demonstrate that using 

LandScan data improves over using county-level aggregate populations (min AIC = 

22390.78) and the US EPA's RSEI risk-related results (AIC = 22866.82). 

We could not examine all possible combinations of , , T, the anisotropy shape, and 

the decay function, so may not have the optimal parameterization.  A fuller search of this 

parameter space is needed. Continued work will also use the SCIPUFF atmospheric 

dispersion model to compare atmospheric modeling against spatial interaction 

approaches. 
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Spatial analysis has gained popularity in ecology. However, standard spatial weights 

matrices can be problematic in ecology where landscape structure can act as a barrier to 

spatial relatedness.  As an example, mountains can create heterogeneity in spatial 

relationships and may create functionally autonomous populations of a single species. 

Our goal is to present an approach to semi-automated delineation of ecologically 

appropriate spatial neighbourhoods.  The general approach is to watershed boundaries, 

derived from a digital elevation model, to constrain the extent of individual spatial 

neighbourhoods. To demonstrate our methods we present a case study using NOT 

FINISHED>.. 

1. Introduction  

Spatially minded ecologists have long understood the complex interaction between 

spatial patterns and process (Legendre and Fortin 1989, Levin 1992).  As such, 

quantifying spatial pattern in biological phenomena has gained popularity in ecological 

research (Fortin and Dale 2005).  For instance, local measures of spatial autocorrelation 

are used to identify hot spots or locations where abundance of a population is greater than 

expected (Nelson and Boots 2008).  Another example of spatial analysis commonly used 

in ecology is geographically weighted regression (GWR) (e.g., Wang et al.  2005). 

Spatial analysis usually requires the definition of a spatial neighbourhood.  Most often 

neighbourhoods are assigned using definitions based on distance, k-neighbours, or 

contiguity (Griffith 1996).  These standard definitions of spatial neighbourhoods are often 

inappropriate in ecology where natural physical barriers, such as mountains, are present 

and create heterogeneity in spatial relationships. For instance, populations of a species 

may be separated by topographic features creating functionally autonomous sub-

populations.  However, a neighbourhood defined by distance or contiguity may include 

individuals from multiple, unrelated sub-populations.  As an example, mountain pine 

beetle populations disperse along valleys and mountains are typically a barrier to 

dispersion.  As such, when quantifying hot spots in data on mountain pine beetle 

infestations, spatial neighbourhoods should be restricted within valleys or along the side 

of a mountain and should not reach beyond the mountain peak. 

When study areas are small it is reasonably easy to modify spatial neighbourhoods 

manually.  However, as with many applied areas of spatial analysis, data sets are 

increasingly large and automated approaches are required for appropriate spatial 

neighbourhood delineation. The goal of this research is to present an approach to semi-

automated delineation of ecologically appropriate spatial neighbourhoods.  To meet this 

goal we use terrain data to delineate watersheds and demonstrate how watershed can be 

used to constrain spatial neighbourhoods. Watersheds are useful because they are often 
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divided by mountain peaks and can be used to partition terrain that separates species’ 

populations. We apply our approach to a case study on data from an epidemic mountain 

pine beetle infestation in British Columbia, Canada. 

 

2. Study Area and Data 
The study area is a southern region of Vanderhoof Forest District located in central 

British Columbia.  Vanderhoof was chosen for this study due to the variability of 

topography which ranges from flat in the north to mountainous in the south. As well, as 

with many locations in British Columbia, the Vanderhoof Forest District has experienced 

epidemic levels of mountain pine beetle (Dendroctonus ponderosae Hopkins) over the 

last decade, and the infestation continues to have substantial impact on pine (Pinus spp.) 

forests and resource-dependent communities in the area.   Periodic population eruptions 

occur when an abundance of susceptible host trees coincides with climatic conditions 

amenable for beetle survival (e.g., Safranyik and Carroll 2006). Although epidemic 

populations are a natural component of forest disturbance, large infestations have 

substantial impacts and provide unique challenges to forest managers (Safranyik et al. 

1974). 

 

Vanderhoof forest District monitors the mountain pine beetle infestation using point-

based, global positioning system (GPS) aerial surveys. Aerial surveys of mountain pine 

beetle infestations use indicators of pine mortality, mainly changes in crown foliage 

color, to monitor mountain pine beetle activity. During helicopter aerial surveys, clusters 

of visually infested trees are identified, typically those with yellow and red crowns, 

indicating mortality one to two year prior to infestation, and a GPS is used to map cluster 

centers with a point. For each cluster, the number of infested trees is estimated and the 

infesting insect species recorded. Attributes have been shown to be accurate to 10 trees 

for 92.6 % of points (Nelson et al. 2006). In the current study, there are a total of 25,460 

GPS points. 

A DEM was used to derive watershed boundaries.  The elevation model had 25 m
2
 grid 

cells and was created from 1:20,000 scale Terrain Research Information Management 

data (Province of British Columbia 1996).  The data were interpolated using a linear 

interpolation process and the DEM is reported to be accurate within 10 m (Province of 

British Columbia 1996).   

 

3. Methods 
We delineated watersheds with standard tools available in ArcGIS. For details on 

watershed delineation we refer the reader to Chang (2006 chapter 15). The input 

elevation model was defined for an area that extended 50 km beyond Vanderhoof’s 

boundary to ensure watershed boundaries are defined without edge effects. A threshold of 

37,500 was applied to the accumulation layer. Selecting the accumulation threshold value 

is largely subjective. Larger thresholds will generate smaller watersheds and threshold 

selection enables users to control the scale of watershed delineation. 

Watersheds are defined in both the flat and mountainous terrain throughout the study 

area.  However, neighbourhoods only need to be adjusted in mountain regions, as terrain 

in low lying areas will not impact the relatedness of species populations. To select 

mountainous watersheds, each watershed was attributed with maximum elevation. All 
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watersheds with a maximum elevation ≥ 1800 m were identified as regions where the 

neighbourhood should be adjusted. The maximum elevation threshold is also subjective, 

but in this case was based on mountain pine beetle biology (Safranyik and Carroll 2006).    

Binary spatial weights matrices were calculated using both a 3km distance bandwidth, 

as 3km is the maximum distance mountain pine beetle are thought to fly within stand 

canopies (Safranyik and Carroll 2006). For watersheds with elevations ≥ 1600 m spatial 

neighbours could only be selected from within the watershed boundary. Also, for 

comparison, the spatial weights matrix was calculated without consideration of 

watersheds boundaries.  

Using all spatial weights matrices Moran’s Ii was calculated. Moran’s Ii is a local 

measure of spatial autocorrelation which is useful for identifying locations of clusters and 

outliers of extreme values (Anselin 1995).  For this research, we focus on identifying 

clusters of high values that are unexpected based on chance. We term clusters of high 

values hot spots.   

 

4. Preliminary Results 
Preliminary results of hotspots detected from constrained and unconstrained spatial 

neighbourhoods indicate the location of hot spots varies only slightly when constraining 

neighbours to within watershed boundaries will change the location of hot spots.  The 

general pattern of hot spots did not change; however, there were some differences in 

points characterized as belong to infestation hot spots. When the data were unconstrained 

3079 points were identified as being part of an infestation hot spot. Constraining spatial 

neighbourhoods by watersheds increased the number of hot spots points to 3109. Eighty-

six points identified as hot when spatial neighbourhoods were unconstrained became hot 

spots once the spatial neighbourhoods were constrained by watersheds.  

 

5. Discussion and Conclusion 
The location of hot spots did not change substantially when spatial neighbourhoods were 

unconstrained or constrained by terrain features.  This is likely due to the scales of beetle 

spread relative to terrain features.  The valleys tend to be much larger than 3km in width, 

but 3km is a reasonable scale for modelling mountain pine betel spread. As such, results 

indicate spatially adaptive neighbourhoods based on ecological information are most 

important when the scale of the spatial processes is similar or coarser than the scale of 

terrain features that influence the spatial process.  

When conducting spatial analysis in ecology, spatial neighbourhoods should not cross 

natural barriers.  We present a simple approach for semi-automated generation of 

ecologically relevant neighbourhoods that only requires a DEM for implementation. In 

mountainous regions, neighbourhood selection is limited to individuals within the same 

watershed. As spatial analysis results are highly dependent on the spatial weighting, 

ecologically informed weights matrices are important for ensuring relevant results.  The 

approach here differs from recently proposed methods for constructing the weights 

matrix which depend only on the data (e.g., Aldstadt and Getis 2006), in that we are 

incorporating ecological knowledge and ancillary data to define barriers via watershed 

delineations. A watershed boundary should only be used to constrain spatial 

neighbourhoods in mountainous regions or other situations where terrain impacts 

dispersal or traversability of the landscape by a species. In low lying areas constraining 
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spatial neighbourhoods by watershed boundaries will cause additional and unnecessary 

edge effects.  In addition to hotspot analysis, ecologically constrained spatial weights 

matrices have potential use in other spatial methods that require specification of spatial 

relationships such as simultaneous autoregressive models (Lichstein et al. 2002) and 

global measures of spatial autocorrelation (Cliff and Ord 1981).  
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1. Introduction 
Many up-to-date GIS applications make use of more than one digital representation of the 
same geospatial  entity.  Information  extracted by multiple  representations  is  compared 
and combined in order to construct data sets that are of higher quality than each of the 
initial data sets/representations; a process known as conflation. One of the most important 
components of conflation is feature matching: given two or more sets of features, each 
feature from one set is matched with exactly one feature of every other set to convey that 
they represent the same object in the real world. In most cases, features are represented as 
2D or 3D geometric objects such as points, linear segments and polygons. Two features 
from different sets are likely to be matched if they have a small distance with each other 
or appear similar under some measure of similarity. It is also possible in practice that a 
feature of one data set corresponds to more than one features of another data set. From 
hereon  we  consider  the  simplest  version  of  matching,  that  is  one-to-one  matchings 
between two different data sets of geometric objects. We shall refer to these two sets as 
the red and blue feature sets.

There  exist  many  feature  matching  algorithms  in  the  GIS  literature.  All  these 
algorithms  comprise  of  two  stages.  In  the  first  stage  for  each  red  (blue)  feature  f a 
candidate set C(f) is defined, that is a subset of blue (red) features that can be matched to 
f. A weight is then assigned between every pair (f,f') where f' is an element of C(f). In the 
second stage, a matching is computed given the weighted pairs of the previous stage. If 
the weights represent a distance measure then a minimum weight matching is sought, 
otherwise if the weights represent a similarity measure a maximum weight matching is 
sought. Most of the matching algorithms in GIS use a greedy approach to compute the 
matching  in  this  stage.  Thus  it  is  not  guaranteed  that  the  computed  matching  is  the 
optimal solution.

Li  and  Goodchild  (2010)  recently  presented  a  non-greedy algorithm for  matching 
features between two different sets. Their algorithm first computes the distance for every 
red-blue pair of features. Then a matching is computed by formulating a Linear Program 
(Ferguson 1955) which is solved by standard LP software. They show experimentally 
that  their  method matches  correctly a higher percentage of features  than the standard 
greedy approaches.  However,  the execution  time of  their  algorithm is  large  even for 
medium size data sets.
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This is not surprising if we consider the size of the candidate sets that are constructed 
by their algorithm. If each of the two feature data sets consists of n elements then the total 
size of all computed candidate sets is n². Thus for n=1000 the total size of candidate sets 
is one million and the resulting Linear Program consists of approximately three million 
numerical values. Solving an LP instance of this size takes considerable time, depending 
also on the software used. Li and Goodchild therefore address the need of using a method 
to reduce the number of computed distances among feature pairs and thus speed up their 
approach.

Indeed, it is not reasonable to consider so large candidate sets. In practice, for say a 
red feature f only few blue elements will have small distance from f and are thus likely to 
be matched with f. Hence we can use a candidate selection technique to avoid computing 
the weights for most possible pairs of features. Such techniques were implicitly used in 
matching algorithms before (Kim et al. 2010) yet those approaches either are of an ad hoc 
nature as they depend on specific representations (e.g. only for raster data) or involve 
non-geometric parameters (semantics).

 In the current work we list a collection of candidate selection techniques that rely on 
concepts from the field of Computational Geometry (de Berg et al. 2008). We have used 
the  Computational  Geometry  Algorithms  Library  (CGAL 2010)  to  conduct  matching 
experiments on geospatial data sets using these techniques. We show that in practice the 
candidate sets can be kept very small without affecting substantially the output quality of 
the matching algorithm.  

2. Proposed Candidate Selection Techniques
We now describe  the techniques  that  we use in our experiments. The techniques  are 
defined here for point sets yet they can be extended for other geometric objects too. In 
each of these techniques we first construct a data structure over one of the two input 
object  sets,  say the  red  set.  For  each  blue  object  p we execute  a  query  in  this  data 
structure. The output of this query is the candidate set of p. We construct candidate sets 
only for the blue objects which we consider sufficient for computing the final matching. 
The candidate selection techniques are the following:

 I) Natural neighbour selection (NNS): A Voronoi diagram is constructed over the red 
points.  The  queried  point  p is  inserted  in  this  diagram and its  Voronoi  cell  vc(p) is 
computed.  The  red points  whose cells  occupied  the area of  vc(p)  before inserting  p 
constitute the candidate set of p.

II)  k-nearest neighbour selection (kNNS): The candidate set of  p consists of the  k red 
points that have the smallest Euclidean distance from p.

III) Orthogonal range searching selection (ORSS): The candidate set of p contains those 
red points that fall inside an axis-parallel square of dimension w centered around p.

  
Each of the above queries can be executed fast using known geometric data structures 

(de  Berg  et  al.  2008).  Considering  small  candidate  sets  does  not  guarantee  the 
computation of the optimal matching or, in theory, even the computation of a matching 
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that includes all input features. Yet, as we show later, in practice the presented techniques 
allow almost always for computing an optimal or near-optimal solution. 

3. Experiments
We conducted matching experiments using the techniques described above. Given two 
2D point sets and using each time one of the techniques we construct the candidate sets of 
the blue features. We then compute the Euclidean distance between each blue point and 
each red point in its feature set and then apply the algorithm of Li and Goodchild to 
compute a minimum weight matching. For method II) we considered k=5 and for method 
III)  we  considered  a  window of  area  equal  to  1% of  the  total  terrain  area.  For  the 
implementation of the LP solver and for the data structures that support the technique 
queries we used CGAL.

As an input data set we used 2D points extracted by a USGS (2010) raster terrain 
model. The extracted points are the 2D projections of local minima of the terrain. We 
added noise to the point coordinates to generate a second point set and thus a matching 
problem instance. The size of each input point set in the experiment instances were of the 
range {10,20,...,300}. For each experiment instance and each technique we measured the 
total  size of the constructed candidate sets, the running time of the algorithm and the 
percentage of features that  were matched correctly.  As a reference,  we conducted the 
experiments also for the case where each candidate set contains all red points (ALL). The 
results of these experiments are summarized in fig. 1-3.

Figure 1. Total size of candidate sets.
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Figure 2. Running time of the algorithm.

Figure 3. Percentage of correctly matched points over all points.

As indicated by the measurements, the algorithm runs incredibly faster when using 
one of the geometric selection techniques. The geometric technique that leads to a higher 
quality matching is kNNS. In fact kNNS leads to matchings which are as good as the 
ones  resulting  from  ALL.  The  NNS  technique  performs  well  but  there  appear  also 
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instances where the matching quality is low, around 25%. The ORSS method does not 
perform well for the chosen window size. For a larger window the performance improves 
but in any case the total candidate set size seems to grow superlinearly as the input point 
density increases.

4. Future Work
It  will  be  interesting  to  evaluate  how the  proposed  selection  techniques  perform for 
different kinds of geospatial data and also to examine algorithms for matching features of 
more than two sets. 
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