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1. Introduction
Various methods for modelling space-time data have been proposed over the years,
including multivariate autoregressive integrated moving average (ARIMA) models and
its extension space time autoregressive integrated moving average (STARIMA) models
(Pfeiffer and Deutsch, 1980). In these time series models, autocorrelation is accounted for
in the autoregressive and moving average terms. Parameter estimates are fixed globally
both spatially and temporally. The models assume that the correlation in data can be
adequately described by such globally set parameters, but this may not be the case if the
correlation between data is dynamic, which it is likely to be on road transport networks
(Cheng et al, 2011). For instance, traffic theories say that the current conditions on a
section of road are influenced to some extent by the previous conditions of adjacent road
sections along both upstream and downstream directions (see for example, Lighthill and
Whitham, 1955; Richards, 1956). In congested conditions, the influence will come
mainly from downstream whereas in free flowing conditions the influence will come
from upstream. On a road network comprising hundreds or thousands of links, such
spatio-temporal autocorrelation structure is dynamic (in time) and heterogeneous (in
space). Yue and Yeh (2008) show the correlation between locations on a road network
determines the forecast ability of a space-time model. This fact has been recognised in
previous studies that achieve improved results by incorporating a dynamic structure in
their weighting systems (Min et al, 2009; 2010; Min and Wynter, 2011). The aim of this
study is to model dynamic autocorrelations of road transport network data By modifying
tradition model to a generic dynamic model which capture the autocorrelation locally
(heterogeneity) and dynamically (dynamic state of the network) over the traditional time
series models. The proposed model is tested with traffic data collected from Central
London. The result shows that the performance of estimation and prediction is improved
on average through the proposed modifications.

2. A Localised Dynamic Space-Time Model - NSTARIMA
STARIMA model considers the observation at location i during time interval t to be a
weighted linear combination of observations in its spatial neighbours at previous time
intervals. Consider that a road network, in which measurements (e.g. speeds, journey
times, etc) are collected on N links over a time period T. Let )(tz be an N-dimensional
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column vector containing the observations )(tzi on each link i, where i = 1,2,…,N,

during each time interval t, where t = 1,2,…,T. STARIMA model states that
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in which )(ˆ tz is a N-dimensional column vector of predictions on all links i at time t. The

first term in the equation is the autoregressive (AR) component, while the second term is
the moving average (MA). The term, )(ε , is a N-dimensional column vector of residual

on each link. The spatial lag (h) represents the spatial distance between two locations.
The spatial orders associated with each kth or lth temporally lagged term in AR and MA

components are respectively km and ln . The spatial order specifies the spatial extent

that could have an effect on the link of interest i within the temporal lags of k and l. The

notation kh and lh are the model parameters to be calibrated. The matrix )(hW is an N

x N spatial weight matrix for spatial lag h. This spatial weight matrix )(hW contains the
set of weights ijw specifying the degree of spatial correlation between links i and j (see

Kamarianakis and Prastacos, 2005; Getis, 2009).
We identify several deficiencies of the above STARIMA model for traffic modelling

and propose a new dynamic time series model – which we call NSTARIMA - that
includes several new features. Details are discussed below.

2.1 Spatial orders

Traditional STARIMA model considers the spatial orders to be fixed and preset for the
associated temporal lag. It may not be appropriate for traffic modelling as the spatial
influences vary under different traffic conditions due to different speeds encountered
(Min et al., 2008). This study relaxes such assumption and considers the spatial orders to
be dynamic and dependent on traffic state. Given the model updating time interval ( t ),

the spatial order )(tmk at time t associated with temporal lag k is determined as
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where )( 0iL is the length of the intermediate link 0i between the link of interest i and

the spatial extent m. Essentially, )(tmk returns the number of links that traffic can

proceed toward the point of interest i in a time period of tk .

2.2 Spatial weight matrix

The spatial weight matrix ( )(hW ) is usually regarded as the physical distances between
the corresponding locations. In road traffic setting, the correlation of traffic at two
locations does not only depend on the spatial distance, but also on the traffic conditions.
We propose a novel spatial weight matrix which takes the traffic states into account. For
a link pair (i, j), the corresponding element in the spatial weight matrix is defined as
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where )(tvi and )(tv j are the respective average speeds on links i and j during time

interval t; ijD is the distance between i and j. The speed )(tvi is defined to be zero if no

data is observed on the link during time t. The spatial weight matrix derived using (4) is
time-varying and traffic state dependent.

2.3 Model formulation

We formulate our new time series model – NSTARIMA - as
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Original STARIMA model is specified by a single global set of parameters ( kh , kh )

for the entire network. In this new model, the model parameters are N x N diagonal

matrices ( khφ and klθ ):

      ),...,,( 21 Nkhkhkhkh φφφdiagφ and       ),...,,( 21 Nlhlhlhlh θθθdiagθ , (5)

where  ikhφ and  ilhθ are the parameters for each link i. It is noted that the

NSTARIMA model covers the STARIMA and ARIMA models as special cases.

3. Case Study
The test network, which comprises 22 links in Central London, is selected for this study
as shown in Figure 1 with arrows showing the directions of traffic. It has variable link
lengths, ranging from 473.4m to 3.85km with an average length of 1.4km. Journey times
of vehicles across the network are measured by Automatic Number Plate Recognition
(ANPR) system which is operated by Transport for London (TfL). The raw journey time
data are aggregated into 5-minute averages.

After discussing with TfL, data from 16 Feb 2009 to 30 Mar 2009 (43 days in total)
are selected for the case study. The dataset is divided into two sets. The first 36 days are
used for calibration which determines the temporal orders (p, q) and the model

parameters ( khφ and klθ ). The remaining 7 days are used for validation which compares

the predictions made by the calibrated model and the actual observations.

The experiment consists of three stages: identification, calibration, and validation.

 Identification refers to the determination of temporal orders – autoregressive (p)
and moving average (q) – in the time series model.

 Given the temporal orders, the model parameters are the determined in the
calibration step by using a least square error approach. This study compares three
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different time series models: ARIMA, original STARIMA and modified
STARIMA.

 Finally, in validation, predictions made by the calibrated models are compared
with the actual observations.

Figure 1 London test network (Cheng et al., 2011)

Figures 2 and 3 respectively show the R-square and root mean square error (RMSE)
of the 22 links, which are arranged in ascending order of lengths. Results show that there
is no single model dominates the others. However, if we summarise average R-square
and RMSE of all links, it shows that NSTARIMA outperforms traditional STARIMA and
ARIMA model.

Figure 4 shows the predictions from 12:00 to 16:00 on 30 Mar. Overall, original
STARIMA has the worst average prediction results as the heterogeneity and dynamics of
the urban road network cannot be well captured (Cheng et al, 2011). However, the
NSTARIMA outperforms the other models on average.

4. Conclusions
This paper proposes a new space-time series model – NSTARIMA - for road traffic
modelling. The proposed model is tested with journey time data obtained from the
Automatic Number Plate Recognition (ANPR) system in Central London. Results show
the average prediction accuracy of the NSTARIMA is better than traditional STARIMA
and ARIMA model. This indicates that the new NSTARIMA can capture heterogeneity
and dynamics of road traffic by modifying the original STARIMA as proposed. Given
travel time is an important index for measuring transport system performance, the work
reported here will contribute to the literature of traffic analysis and management.
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Figure 4. Prediction plots of three links 2052 (a), 1623 (b), and 1593 (c) at 12:00 - 16:00
on 30 Mar using three different models NSTARIMA, STARIMA, and ARIMA
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1616 2007 524 474 2324 1447 463 2055 448 425 1025 1593 2052 1419 432 2079 1592 1384 2085 1623 2301 2140

473m 608m 612m 627m 660m 723m 844m 881m 882m 926m 1087m 1176m 1297m 1335m 1427m 1492m 1644m 1777m 2111m 2580m 3698m 3855m average

Modified STARIMA 0.1332 0.1886 0.1804 0.1119 0.3982 0.4708 0.4792 0.3635 0.1577 0.0506 0.4082 0.6501 0.3642 0.5703 0.2059 0.1532 0.3113 0.4802 0.0386 0.6701 0.4006 0.7182 0.3411

STARIMA 0.1449 0.1349 0.1191 0.1339 0.2001 0.2146 0.2634 0.1262 0.0785 0.1842 0.3277 0.3832 0.3411 0.5054 0.2257 0.1044 0.2449 0.6248 0.0997 0.6361 0.2867 0.7645 0.2793

ARIMA 0.0812 0.1029 0.1518 0.1429 0.6175 0.5187 0.4829 0.3635 0.1574 0.2526 0.3945 0.6495 0.1179 0.3172 0.3809 0.2542 0.2975 0.7298 0.0610 0.3668 0.2205 0.8003 0.3392
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Figure 2. R-square comparison of three different models

1616 2007 524 474 2324 1447 463 2055 448 425 1025 1593 2052 1419 432 2079 1592 1384 2085 1623 2301 2140

473m 608m 612m 627m 660m 723m 844m 881m 882m 926m 1087m 1176m 1297m 1335m 1427m 1492m 1644m 1777m 2111m 2580m 3698m 3855m average

Modified STARIMA 319 87 208 634 122 99 62 49 43 483 94 133 140 171 148 157 148 165 314 211 251 126 189

STARIMA 264 100 285 524 237 257 123 154 113 212 145 322 167 216 131 338 248 98 162 221 362 98 217

ARIMA 402 125 199 550 63 100 62 49 43 163 88 138 392 426 72 102 140 68 200 399 383 88 193
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Figure 3. RMSE comparison of three different models
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