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1. Introduction 
SLEUTH is a simulation model for urban growth and land use changes at geographic 
scales. The model couples two cellular automata, and uses input data to capture past 
behavior as parameters during calibration. Calibration uses brute force methods, requiring 
either long execution times, or parallel computing. We describe the implementation of a 
genetic algorithm (GA) that reduced calibration time and enhanced model accuracy. 
While the model has been successfully applied worldwide (Clarke et al. 2007), 
computation time remains an obstacle to effective calibration. By designing a GA to work 
in conjunction with SLEUTH, the computation time was reduced by 80%, while the 
accuracy was improved. 
 
2. SLEUTH  
SLEUTH uses two complex cellular automata operating on a geographic region 
represented by a two-dimensional cellular grid. Every cell can perform a transition to 
another state, directed by a transition function and the values in adjacent cells (Clarke, et 
al. 1997). Cellular automata models have revolutionized urban modeling (Torrens and 
O’Sullivan, 2001), and are used to simulate various natural and man-made phenomena. 

SLEUTH simulates urban growth and land use dynamics when calibrated with a set of 
mapped data reflecting past patterns. A sequence of growth rules is applied to the cells, 
each controlled by a set of coefficients that encapsulate the dynamics of a region 
(diffusion, breed, spread, road gravity, and slope). These values are not initially known 
and require extensive calibration to determine. SLEUTH’s code automates the calibration 
process, nevertheless the user is still required to guide the calibration phases (Silva and 
Clarke, 2005). The model provides thirteen metrics describing the fit of the calibration 
coefficients, with the best set being selected for forecasting. The Optimal Sleuth Metric, a 
product of eight of the metrics, is best for optimizing calibration (Dietzel and Clarke 
2007).  

Implementation requires calibration (determining the best coefficients) and predicting 
(modeling into the future). The calibration phase simulates historical change and 
compares it to known data to determine how accurately the model simulates growth 
(Jantz et al., 2010). SLEUTH repeatedly applies sets of the five coefficients to determine 
which yields the highest OSM. Coefficients consist of numbers between 0 and 100, the 
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entire search space constituting 1015 coefficient sets. The brute force approach performs 
three passes through the search space, with each run the search granularity gets smaller. 
Two potential problems emerge, the first being the sheer computation time required. Each 
of the three calibration phases requires at least 2,000-10,000 iterations. Monte Carlo 
methods minimize within-run variability but further increase computation time. A recent 
application required over 6 months of CPU time.  

The phased and stepped brute force approach may become unable to break free from a 
local optimum, since large areas of the search space are eliminated from the solution 
domain. Using a GA in the calibration addresses both problems. By allowing the values 
to be randomly, but evenly, distributed throughout the search space and by encouraging 
the best solutions to survive, both speed and accuracy can be improved. We applied the 
GA at the code level by replacing the source code that implements the brute force 
calibration. SLEUTH’s modularity means that only the driver level function needed 
alteration, all of the model behavior modules remained unaffected.  

  

3. GA Design 
GAs simulate biological evolution and natural selection among a set of possible 

solutions, and can produce an optimal or near optimal solution. SLEUTH uses a bounded 
five dimensional search where the model metrics can direct the search. The five 
dimensions are the integer values of the five model behavior parameters, and the metrics 
reduce to the OSM. 

The application of GA to SLEUTH was first achieved by Goldstein (2004) using both 
elitism and tournament selection, and combining gene competition strategies (stratified, 
partial random, and random). Crossover employed both uniform and self-crossover, and 
mutation used a 10% randomization. The approach was tested for Sioux Falls, South 
Dakota over 200 generations, with 18 chromosomes in each run, but for only one Monte 
Carlo iteration, with the calibration repeated 10 times. Results showed that 70% of the 
chromosomes outperformed brute force yet used one fifth as much CPU time, giving 
better goodness of fit measures. Nevertheless, there was evidence that the GA became 
stuck in local maxima, and some optimization ambiguity as the work predated the OSM, 
and so compared different metrics. While the GA was only simulated (separately  
generating the parameters, that were fed to independent runs across 10 computers), 
Goldstein did explore the consequences of sub-optimal calibrations for model 
forecasting, but not which gene selection, cross-over and mutation strategies worked best. 
Our approach first tested possible strategies, and then hard coded a single strategy into 
the SLEUTH source code driver module. 

The GA for SLEUTH calibration was designed based on Goldstein’s findings and 
prior GA research including choices on encoding, fitness evaluation, crossover, mutation, 
and survival selection (Eiben and Smith 2003). The model provides a natural encoding, 
each gene is represented as a set of five integer coefficients in the range {0,0,0,0,0} to 
{100, 100,100,100,100}. Each coefficient represents a separate piece of genetic material 
for a specific gene, with all five combined composing the entire composition of a gene. 
When running the model with the five coefficients, the OSM metric provided creates a 
natural fitness evaluation for an individual gene. Crossover, the process of combining 
existing genes to create new genes, takes a subset of the coefficients from one gene and 
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combines them with the opposite subset from the other, which was simpler than 
Goldstein’s method (2004). This was performed by using a random number between 0 
and 4 and using that value to decide how many elements from the first parent are used to 
create the offspring. The remaining elements were provided by the second parent. A 
second offspring was produced from the opposite elements that created the first offspring. 
Parents were selected using tournament selection, a random subset of the population is 
chosen and two selected using probabilities proportional to fitness. Mutation replaces 
coefficients within a gene with a random value at the mutation rate frequency to maintain 
diversity. The mutation rate was provided as an input to the genetic algorithm and can be 
tuned based on the performance of the model. Lastly, survival selection is the method for 
selecting a subset of the population and its offspring for the next generation. Each 
generation replaces the weakest genes in the old population with the strongest of the 
offspring, until at least half of the population is replaced and there are no old population 
genes that are weaker than any remaining offspring. Elitism prevents the fitness from 
regressing during the calibration. 

The GA was first tested to determine population size and mutation rate. Testing used 
2,000 iterations through the model per run of the GA. Using the Demo_City test data 
provided with SLEUTH showed that neither a low nor high mutation rate was ideal, but 
within the range 0.10 to 0.16 was satisfactory (Figure 1). Results showed that population 
sizes between 15 and 30 were good choices (Figure 2). A population size of 25 and a 
mutation rate of 0.16 were chosen. While 15 showed the strongest fitness, a population 
size must be sufficiently large to maintain genetic diversity. 

 

 
Figure 1. Results of GA test: Mutation Rate 
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Figure 2. Results of GA test: Population Size 

 
 
4. Results 
The GA was used in SLEUTH and the results compared to the brute force method as 
applied to Demo_City. OSM values obtained were similar to those achieved in other 
SLEUTH applications (Table 1). 
 

Statistic 
Fitness 
(OSM) 

% 
Improvement 

Mean  0.705013 3% 
Median  0.697704 2% 
Standard Deviation  0.051764 ‐‐ 
Minimum  0.620926 ‐10% 
Maximum  0.870902 27% 
Brute Force Calibration  0.687381 ‐‐ 

 
Table 1: Genetic Algorithm Calibration Results 

 
The GA on average performed slightly better than brute force. Due to the stochastic 

nature of a GA, there were rounds where it performed up to 10% worse or 27% better 
than brute force. As with Goldstein’s test, the model was calibrated using a single Monte 
Carlo iteration to reduce computation time and allow for rapid evolution in the GA. 
  
 
5. Conclusions 
Results showed the GA can maintain or improve the fit of SLEUTH. While the median 
solution was a small improvement, performance boost varied from -10% to 27%. Yet the 
real value of GA is in reducing computation time, where it outperforms brute force 
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calibration by a factor of 5, without subjective input. This speed-up was also achieved by 
Goldstein (2004), and may be further improvable by experiment. We capped the GA at 
2,000 generations, while the brute force required a minimum of ~10,000 iterations. On an 
Intel XEON 5570 CPU one run of the GA was completed in ~30 minutes and eight runs 
could be performed simultaneously per CPU without taxing the server. This would allow 
model calibration in hours, compared to weeks with brute force. Such a saving would 
permit calibration sensitivity tests not feasible otherwise. The SLEUTH code used in this 
research was posted to the SourceForge open source site 
(https://sourceforge.net/projects/sleuth-ga/). 

Future improvements can be made to the GA through algorithm optimization and 
parallelization. These would increase the efficiency of the GA further improving speed, 
and reducing calibration to minutes. Such times would overcome one of the last 
remaining obstacles to SLEUTH’s application in urban planning and land management 
(Clarke, 2008). Furthermore, it is a good example of geocomputation, where computer 
science optimization methods (GA) meet simulation modelling in geography. 
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