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1 Introduction

In spatial sampling, once samples of the primary variable have been collected, it

is possible to augment the initial set by collecting additional measurements at other

locations, a method known as second-phase sampling (Cressie 1991, Muller 1998, van

Groenigen and Stein 1998 and recently de Gruitjer et al. 2006). Following a first

sampling phase, the kriging variance is computed at each location using a covari-

ogram function. Generally, additional observations are gathered away from existing

points, that is where the kriging variance is large (see for instance Van Groenigen

and Stein 1998). However, when the process under study is not stationary, sam-

pling efforts should be directed in those strategic locations exhibiting strong spatial

variation locally (Delmelle and Goovaerts 2009). In this paper, we formulate these

two objectives into a single weighted-objective function -referred to as the weighted

kriging variance-, where the weights reflect the roughness of the spatial process.

This objective function is highly non-linear (inversion of covariance matrices), and

calls for robust heuristic methods. Additional samples can be collected sequentially,

for instance by adding one sample at a time to the initial set. This procedure may

be suboptimal but fast since it requires the inversion of a matrix augments by only

one entry.

Practically, a covariogram summarizing the spatial variation in the observed variable

with distance is determined following the collection of initial samples. Based on the

covariance structure, the kriging variance is computed at each grid node, and weighted

by the local variation at that node. The objective consists of locating those additional

samples strategically to maximize the change in weighted kriging variance. Heuristic

methods decide on the location of new samples. For instance a greedy algorithm

will allocate additional observations on the peaks of the weighted kriring variance
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surface but these local maxima may not be optimal to the objective function. In this

paper, we propose a combination of heuristic methods: first, additional samples are

determined using a sequential greedy algorithm and the objective function evaluated.

Second, the points obtained using a greedy algorithm are used as a starting solution

in simulated annealing. Through a swapping procedure, additional points are ex-

changed for other potential points, while the objective function is recomputed. This

metaheuristic procedure combines the advantage of the greedy algorithm, that is its

rapidity, with simulated annealing, which is recognized for its convergence towards

optimal solutions.

2 Additional sampling methodology

A variable of interest Y has been measured at m locations within a study region,

D. Measurements are denoted y(si), ∀i = 1 . . .m (Goovaerts 1997). Using data

values of the primary variable and a covariogram function, the kriging variance at a

gridpoint sg: (
σk(sg)

)2

= σ2 − cT (sg) ·C
−1 · c(sg), (1)

where C−1 is the inverse of the covariance matrix C based on the covariogram func-

tion. The term c is a column vector and cT its corresponding row vector. The

Average Kriging Variance (AKV ) is obtained by integrating Equation 1 over the

area D. Computationally, discretizing D over a fine grid of points (set G):

AKV =

∫

D

(
σk(sg)

)2

≈
1

⌊G⌋

∑

gǫG

(
σk(sg)

)2

(2)

Our first objective Z[S] is to select a set of n points to our exisiting set of m samples,

which will maximize the change in kriging variance by as much as possible. This

process can be thought as a simulation of what the change in kriging variance is

expected to be, without having to collect additional points, assuming the covariogram

structure would remain constant (Burgess, Webster and McBratney 1981 as well as

Cressie 1993). Specifically:

Maximize︸ ︷︷ ︸
{sm+1,...,sm+n}

Z[S] =
1

⌊G⌋

∑

gǫG

(
σold

k (sg)
)2

−
(
σnew

k (sg)
)2

, (3)

where S denotes the sampling scheme. The set P of p potential points is obtained by

discretizing D, generating a total of
(

p

n

)
possible sampling combinations.

The kriging variance is unfortunately misused as a measure of reliability of the kriging

estimate, as noted by several authors (Deutsch and Journel 1992; Armstrong 1994).
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It is merely a function of the sample pattern, sample density, the numbers of sam-

ples and their covariance structure. The kriging variance assumes that the errors are

independent of each other, which means that the process is stationary, an assump-

tion violated in practice. Figure 1 illustrates the limitation of the kriging variance

(Armstrong 1994), the objective being to interpolate the value of the inner grid point,

highlighted with a question mark. The interpolation is a function of the values at

the four surrounding observations. In scenario b, three very similar values and an ex-

treme one. The scenario in a however shows four data values in a very narrow range.

Assuming a similar spatial structure in both cases and given that the configuration of

the data points is the same, the kriging variances are identical, and so are the kriged

estimates. Nevertheless, since there is much less variation among its neighbors, the

left-hand side scenario is a much safer option than the right hand-one when it comes

to estimating the value of the primary variable.
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Figure 1: Example of two-dimensional nonstationarity. Dark points are used as data values to
interpolate the center point (light gray). After Armstrong (1994).

This example illustrates the importance to account for local variations in the ob-

served variable. Let ŷ(sg) be the interpolated value of the primary variable Y at a

grid node sg. Estimating by how much that grid node is different in value from its

surrounding points sj (j = 1, 2, . . . J) is possible through a filter process, specifically,

a circular filter is constructed around each grid node sg that encompasses its neigh-

bors. For illustration purposes, Figure 2 illustrates a 3 by 3 window, however the

methodology can handle various neighborhood sizes. To determine an appropriate

moving window size J , we compute the squared difference in interpolated value be-

tween the central grid node ŷ(sg) and the surrounding ones ŷ(sj). We also introduce

a distance factor d(sj , sg) and a parameter β, both regulating the importance given

to nearby points. This is then summed over the set G. The weight λ(sg) becomes:

λ(sg) =

J∑

j=1,j 6=g

d(sj, sg)
−β ·

(
ŷ(sj) − ŷ(sg)

)2

∑J

j=1,j 6=g d(sj, sg)−β
(4)
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Figure 2: A 3× 3 moving window: a circle is passed around a grid node within a specific distance.

If the neighborhood J is kept constant, λ(sg) will exhibit great values when β < 1,

because more weight is given to far away data points. As β increases, λ(sg) decreases

and flattens out for high values of β. If J is too large, zones of rapid changes may

go undetected. Equation 3 should be account for spatial variation of the primary

variable. As such, a weighted second-phase sampling problem can be formulated as

a single-weighted objective (Cressie 1991) where the kriging variance is weighted by

Equation 4:

Maximize︸ ︷︷ ︸
{sm+1,...,sm+n}

Z[S] =
1

⌊G⌋

∑

gǫG

λ(sg) ·

∣∣∣∣
(
σold

k (sg)
)2

−
(
σnew

k (sg)
)2

∣∣∣∣ (5)

3 Application

In this paper, we use a sequential approach to strategically allocate new obser-

vations. To illustrate our methodology, we use primary data on soil concentration

of Chromium (Cr) in a study area near La Chaux de Fonds, in the Swiss Jura (see,

Goovaerts 1997 for the dataset). The Cr-concentration mg

kg
represents the quantity of

the heavy metal per kilogram of soil sampled.

Sequential addition assumes that one additional point has to be added to the initial

set n-times. Once the first point has been selected and added to the initial set M ,

n − 1 additional locations are to be chosen in a similar, sequential fashion. The se-

quential addition approach is illustrated using algorithms such as random strategy,

total enumeration, greedy, simulated annealing and simulated annealing with greedy

start. The greedy approach has the drawback of getting stuck at local optima, while

total enumeration is not time-efficient. Since simulated annealing has the inherent

property of jumping out of a local optimum, we capitalize on this technique for find-

ing the optimal solution S∗ to the sequential addition, using a cooling factor κ at the

end of a fixed number of iterations Tit. Similarly, the step size for determining new

neighbors (for swapping purposes) was reduced by a factor δ. A large initial step size
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δ of 3 kilometers -corresponding to approximately half the size of the study area D-

was chosen to permit wide jump swaps.

Figure 3 to the left illustrates the performance of the greedy algorithm and total enu-

meration in maximizing the change in weighted kriging variance with the addition

of new samples, against the changes obtained using naive addition. The total enu-

meration evaluates all possible solutions to the sequential addition, but may still be

suboptimal. To check on global optimality (14.879%), we ran a simultaneous simu-

lated annealing (see Van Groenigen and Stein 1998) and found that sequential results

were very close to the optimal. The sequential total enumeration yielded a 14.8%

improvement in the objective function. For the naive (random) addition, a total of

1500 simulations were performed, providing a good lower bound to evaluate other

heuristics. In the best-case scenario, a reduction of 7.52% was obtained, in compari-

son with a change of 4.89% in the worst case. Table 1 reports on the computational

time. When simulated annealing is used (Figure 3 to the right), the algorithm returns

near optimal solutions, even more so when the algorithm uses a lower cooling schedule

(κ closer to 1), and a greater number of iterations per temperature steps Tit.

Sequential heuristic Time (min) Reduction (%) Optimality gap (%)
Total enumeration 229.72 14.768 .75
Näıve 8.56 [2.869; 7.521] [80.72; 49.45]
Average näıve 8.56 4.892 67.12
Greedy 8.04 12.537 15.74
SA-Greedy(κ = .875, β = .9) 106.76 14.768 .75
SA-Greedy(κ = .35, β = .45) 33.35 14.649 .8
SA(κ = .95, δ = .965) 241.06 14.733 .98
SA(κ = .35, δ = .45) 33.82 14.420 3.08
SA(κ = .05, δ = .05) 26.50 13.95 6.24
Simultaneous heuristic SA 1500 14.879 0

Table 1: Average reduction (%), and optimality gap (%) for the sequential and simultaneous
addition after the addition of n = 30 points.

The combination of SA with a greedy start allows improvement upon a first very

good solution. Since the starting solution is relatively good, SA may experience

difficulties to improve upon that incumbent. Figure 4A shows the first 15 dynamic

moves, with SA parameters κ = .875, β = .9, yielding the sequential optimal in

106.76 minutes. The location exhibiting the highest weighted kriging variance (point

a = s+

m+1) is selected and serves as a starting point for SA, yet the latter is unable

to locate a better point, hence a = 1 = s+

m+1. That point is added to the set M

and the weighted kriging variance is re-computed accordingly. Location b = s+

m+2

is the point with the highest kriging variance and is selected as the starting point.

SA finds a better sample at location 2-symbolized by a white dot, and that point
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Figure 3: Percentage reduction in weighted kriging variance using a näıve approach versus total
enumeration. The sensitivity of the sequential SA coupled with greedy to the cooling factor κ is
illustrated in B. Notice for Tit = 60 how near-optimal solutions are obtained even if the temperature
drops quickly (κ = [.1; .25]).
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Figure 4: Illustration of the simulated annealing algorithm using a greedy start approach for the
first 15 points (A), in the best-case scenario (κ = .875, β = .9). Black dots denote initial points
obtained using greedy. The arrows point to the locations obtained using SA. Graph B illustrates
the reduction between successive steps using SA on greedy for n = 30 points.

is added to M. The weighted kriging variance is computed with the set M that

contains now two new samples, namely points 1 and 2. In the following 17 additions,

SA will ameliorate the incumbent greedy solution (see Figure 4B). Notice how often

SA discovers a better solution from the initial greedy sample, yet the magnitude of

that improvement decreases as new samples are being added.
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4 Conclusions:

In this paper, we have addressed the second-phase spatial sampling problem based

on two main criteria; the change in kriging variance, and the spatial variation of the

primary variable. Results of our numerical testing showed that total enumeration

outperformed all other heuristics in the sequential case, but at the cost of an extended

running time. The greedy approach, which locates new samples points where the

weighted kriging variance is the highest, returns near-optimal results in a short time-

frame. Simulated annealing is very sensitive to the choice of the cooling factor,

that governs the search procedure. The combination of simulated annealing with

a greedy start performed remarkably well considering the optimality gap and the

computational time.
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