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1. Introduction  
A common issue in spatial interpolation is the combination of data measured over 

different spatial supports. For example, in the field of medical geography (Goovaerts, 
2009) information available for mapping disease risk typically includes point data (e.g. 
patients residence) and aggregated data (e.g. socio-demographic and economic data at the 
census track level). Similarly, soil measurements recorded at discrete locations on the 
ground are often supplemented with choropleth maps (e.g. soil or geological maps) that 
model the spatial distribution of soil attributes as the juxtaposition of polygons (areas) 
with constant values (Goovaerts, 2011). This paper presents a coherent geostatistical 
approach to accommodate both areal and point data in the spatial interpolation of 
continuous attributes. The procedure is illustrated using two datasets: 1) geological map 
and heavy metal concentrations recorded in the topsoil of the Swiss Jura, and 2) 
incidence rates of late-stage breast cancer diagnosis per census tract and location of 
patient residences in Michigan for the period 1985-2002 (Figure 1). 

 

2. Methodology  

2.1 Area-and-Point Kriging  
Consider the problem of estimating the value of a continuous attribute z at any location u 
within a study area A. The information available consists of set of point data collected at 
n discrete locations u {z(u); =1,…,n}, supplemented by a set of B areal data {z(vk); 
k=1,…,B} recorded for mapping units vk of various size and shape. Both point and areal 
data can be simultaneously incorporated into the prediction using the Area-And-Point 
(AAP) kriging estimate defined as: 
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where n(u) and K are the number of surrounding point and areal data, respectively. Point 
observations are typically selected based on their distance to the interpolation node u, 
while areal data are chosen according to adjacency rules; for example, all polygons 
adjacent to the polygon including u are used in the estimation.  
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Figure 1. Information available for mapping topsoil heavy metal concentration and late-
stage breast cancer incidence. (A) Soil field measurements. (C) Choropleth map of the 
main geological formations. (B) Location of 937 patient residences. (D) Choropleth map 
of late-stage breast cancer incidence rate in three Michigan counties, by census tract. 

 
The kriging weights are the solution of the following ordinary kriging system: 
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where (u) is the Lagrange multiplier, and xi=ui if i≤n(u), and xi=vi otherwise. The 
quantity ),( ji xxC

 is a point-to-point, point-to-block or block-to-block covariance 
depending on the indices i and j. Like in traditional block kriging, the block to-point 
covariances ),( ukvC are approximated by the average of the point support covariance 
C(h) computed between the location u and a set of  Pk points discretizing the block vk. A 
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similar procedure is used for the block-to-block covariances ),( 'kk vvC = 
Cov{Z(vk),Z(vk’)} and involves averaging C(h) computed between any two points 
discretizing the blocks vk and vk’. A major difference between AAP kriging and the 
related algorithms (area-to-area and area-to-point kriging) introduced recently in the 
geostatistical literature (Kyriakidis, 2004), is the availability of point data here. Thus, the 
point support semivariogram can be inferred directly from the observations without any 
need for a deconvolution of the areal semivariogram (Goovaerts, 2008). 

2.2 Binomial Kriging  
The application of AAP kriging to the medical geography case-study must account for 
the fact that the K areal data have varying degrees of reliability: these observations are 
incidence rates that tend to become unstable when the denominator (i.e. the number of 
cancer cases in this particular example) is small. On the other hand, point data can be 
viewed as an extreme case where the population size is one (individual-level data). The 
information about each cancer case, referenced geographically by its residence’s spatial 
coordinates u=(x,y), takes the form of an indicator of early/late stage diagnosis: 
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The Area-And-Point (AAP) kriging estimate is now expressed as a linear combination of 
point indicator data and areal incidence rates: 
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The kriging weights are the solution of the following system of linear equations (Webster 
et al., 1994; Goovaerts, 2010): 

 
.1)(

)n(1,...,i      ),()(
)(

),( )(

)(

1

)(

1
























Kn

j
j

iI

Kn

j i

ijjiIj KxC
vn

a
xxC

u

u

u

uuuu





     (5) 

where ij=1 if i=j and 0 otherwise, ),(*)1(* iiI vvCmma  , CI(h) is an indicator 

covariance function, and m* is the population-weighted mean of the N rates (N=83 census 
tracts here). The addition of the error variance term, a/n(vi),  for a zero distance accounts 
for variability arising from population size, leading to smaller weights for less reliable 
incidence rates based on fewer cases. 

3. Results and Discussion  
Figure 2 (left column) shows the maps of chromium concentration estimated using 

alternative interpolation techniques. The reference approach is ordinary kriging (OK) that 
uses only field data (Fig. 2A). The other two maps incorporate areal data that take the 
form of average chromium concentration per geological mapping unit. These 
concentrations were used either as local means in residual kriging or directly incorporated 
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Figure 2. Maps of chromium concentration and late-stage breast cancer incidence rate 
created by alternative interpolation techniques. (A,B) Ordinary kriging. (C,D) Kriging 
that combines both areal and point data “AAP kriging”. (E,F) Residual kriging with a 
choropleth trend model. The same color scale is used for each series of three maps. 

 
into the Area-And-Point estimator. In the later case, the average of kriged estimates 
equals the mapping units’ mean (coherence constraint). The residual semivariogram 
model has a short range, leading to “bull's-eye” effect around sample points in the map 
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created by residual kriging (Fig. 2E). In contrast, the AAP map (Fig. 2C) is much 
smoother and clearly displays the lower concentrations expected on the Argovian 
formation. Differences between the three maps are the largest in sparsely sampled areas 
where the choice of a trend model becomes preponderant. In particular, incorporating the 
geological information leads to smaller estimates on the section of Argovian formation 
where no sample was collected (dashed circle in Fig. 2C) and in a small Argovian 
mapping unit that must satisfy the coherence constraint despite the presence of larger 
sampled concentrations (solid circle in Fig. 2C).  

A similar analysis was conducted for the health outcome data in Figs. 1B-D. All 
incidence maps were created using the 32 closest point indicator data and, for AAP 
kriging, the rates recorded in census tracts that share a boundary or vertex with the tract 
including the interpolation node (1st order adjacency). Incorporating census-tract 
information through residual kriging adds more details to the map but generates 
discontinuities at the tract boundaries. On the other hand, accounting for adjacent areal 
data in AAP kriging leads to a map with more compact spatial features than the indicator 
kriging map.  

The performance of the proposed approach, relatively to ordinary kriging or a 
traditional residual kriging with choropleth map trend model (e.g. constant value within 
each polygon), was assessed using jackknife. Performance criteria included the 
magnitude of prediction errors, the accuracy of the model of uncertainty, the smoothness 
of interpolated maps, and the ability to discriminate between early and late-stage cancer 
cases. Results (Goovaerts, 2010) demonstrated the overall better prediction performance 
of AAP kriging over ordinary kriging and residual kriging. In particular when sampling is 
sparse, incorporation of areal data improves the prediction accuracy while the exactitude 
property of areal data decreases the smoothness of interpolated surfaces.  

4. Conclusions 
The ability to combine data measured at various scales and over different spatial supports 
in kriging is becoming a pressing need, in particular as the field of geostatistical 
applications now encompasses social and health sciences. Whereas the first analytical 
developments of kriging clearly demonstrated its flexibility to accommodate different 
measurement and prediction supports, geostatistical analysis of a mixture of point data 
and irregular blocks has rarely been implemented in practice, mainly because of its lack 
of application in mining. Joint advances in GIS software and computational resources 
now allow the application of kriging to the complex geographies found in social and 
health sciences (Goovaerts, 2009). In addition, the recent development of binomial and 
Poisson kriging allows one to take into account both the spatial extent of the geographical 
unit and the size of the population under study within that unit (i.e. number of breast 
cancer cases) in the interpolation. 
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