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1. Introduction 

Models of spatial interaction such as transport, migration, commuting and trade 

usually partition space into zones, to represent the receiving and sending end of the 

interaction. When zones encompass multiple locations, the partitioning causes an 

aggregation error (Hillsman and Rhoda 1978). The aggregation error increases with 

the size of zones. Aggregation errors can cause bias (Goodchild 1979; Openshaw 

1984) and when zones are larger than a (generally unknown) threshold, models 

become invalid (Tobler 1989). It therefore seems obvious to make zones smaller 

whenever possible. In practice, however, zones often remain large for a number of 

reasons, including data availability, parsimony and computational complexity.  

There are different aspects to the aggregation error; there is the information loss 

associated with averaging variables and the loss of spatial precision – typically by 

conceptually concentrating all of a zone in its centroid. Both types of error are 

amplified when non-linear functions are applied on the aggregated variables, which 

can lead to a further model bias. One domain where non-linear use of aggregated 

variables causes a risk of bias is Discrete Choice Modelling where the utility of an 

alternative is typically an exponential function of descriptive variables. It is therefore 

well-recognized that aggregation of alternatives must account for the effect of size 

and variability of those alternatives.  However size and variability are often 

imperfectly understood and the analysis has to depend on judgment, experience and 

proxy variables (Ben-Akiva and Lerman 1985 p. 252-275). In recent years 

(micro)simulation has been established as a method for aggregation that circumvents 

many of the complications of analytical solutions (Train 2009). The location variation 

however, is not usually considered in simulation applications. For instance Train 

(2009 p. 55) suggests that alternatives with a geographical dimension require utility 

parameters specified in a log function to facilitate analytical aggregation. This paper 

intends to follow the simulation approach and extent it to the issue of geographical 

aggregation. 

2. Method 

The model that will be used to test the approach is a doubly-constrained model of 

commuting. The general doubly constrained model has the following form: 

 ij i j ijT a b P , (1) 

where Tij is interaction between origin zone i and destination j, in this case the 

number of commuting trips. Pij is the prior distribution of interaction from i to j. ai 

and bj are balancing factors, whose values are determined by the constraints 

respectively at the origin and destination zone. Balancing factors ai and bj are chosen 

such that: 
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where Ri is the constraint for the i-th row and Cj is the constraint for the j-th 

column, which also implies 
i jR C  . Balancing factors are typically found by 

iteratively applying the following equations (Fratar 1954): 
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The prior distribution expresses the ‘gravity’ nature of the model, it is defined as 

follows: 

 ijd
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where Oi is the size of origin zone i and Dj is the size of destination zone j. In the 

case of commuting, origin size is the working residents and destination size is the 

number of workplaces. dij is the distance between zones i and j and parameter β the 

sensitivity to distance. 

The doubly constrained model is linear except for the exponential function of 

distance. The simulation approach will therefore focus on that function. In the 

traditional approach the prior distribution is calculated on the basis of mean distance 

between zones: 

 ijdtraditional
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where mean distance is the distance between zone centroids, with the intrazonal 

distance being approximated by the ‘internal radius’: 
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where ci is the centroid of zone i and Ai is some measure of the land area of zone i.  

This paper proposes the following alternative: 
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where dijn is the n-th random sample of distance between locations in zones i and j: 

   ijn in jnd p p  , (8) 

where pin and pjn are random locations within respectively zones i and j. The random 

locations are drawn from a uniform spatial distribution: a random location in a zone is 

found by a series of geometrical operations on the polygon that outlines the zones; 

First the polygon is decomposed into triangles using a dedicated triangulation library 

(Shewchuk 1996); Next one triangle is randomly selected using the area of each 

triangle as the weight; Finally a point is found within the selected triangle by applying 

the algorithm of Turk (1990). 

3.  Case study and results 

The model is applied on commuting data of England as measured by the U.K. Census 

of 2001 at the level of Standard Table Wards (‘wards’ from here) as well as Local 

Authority Districts (‘districts’ from here). The data used is available from Centre for 

Interaction Data Estimation and Research (http://cider.census.ac.uk ). Wards form the 

most detailed geography at which Census commuting data is made available. Districts 

present a more aggregated geographical level at which practical policy analysis is 

often carried out.  There are 354 districts and 7932 wards in England.  The digital 

boundaries (as polygons) of districts and wards come from UK Borders 
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(http://edina.ac.uk/ukborders/),. The centroids of zones are calculated as their 

geometric centre. Fig. 1 presents the ward and district geographies. 

The model has been calibrated twice, with both versions of priors (i.e. equations 5 

and 7). A bracketing approach called Golden Section Search (Press 1992) was 

followed to find the value of β that minimized the following error: 

     
2

,

model census

ij ij

i j

T T   , (9) 

where δ is the discrepancy between modelled and actual (Census) commuting 

matrices. 

Table 1 gives estimated values for β and the associated error δ. It shows that for the 

case of wards it makes little difference which approach is chosen, but for districts 

there is a marked difference in performance where the simulation based model 

performs 35% better than the traditional model. The graphs in fig. 2 depict the trip 

distribution as a function of distance and confirm the difference in performance.  

 

Figure 1. Study area England at district (left) and ward (right) levels of aggregation. 

Geography Model β δ(*10
9
) 

Wards Traditional 0.34 2.99 

Wards Simulation 0.36 2.87 

Districts Traditional 0.37 90 

Districts Simulation 0.31 58 

Table 1. Calibration results and errors. Note that errors are only comparable between models applied at 

a common geography. 

  

Figure 2. Census and modelled trip distributions. Note zone sizes distort distribution patterns 

particularly at the district level. 
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4. Conclusion 

This paper follows up on the recommendation of Train (2009) and others to employ 

simulation when faced with discrete choice models for which analytical models are 

not feasible or too restrictive.  The case study is carried out on the generic doubly-

constrained model, which is readily generalisable to more sophisticated random utility 

models. 

 By comparing two cases that differ in the level of spatial aggregation it became 

clear that location sampling does significantly reduce the error caused by using 

average distances. At the fine scale of wards the effect of error reduction is small 

although still apparent. At the coarser scale of districts however, simulation would 

seem essential in future models to contain the aggregation error. 

Simulation can be a mechanism for reliable modelling on the basis of coarse scale 

data when fine scale data is not available. An example of such data is the UK Census 

commuting data that only offers thematically refined data at coarse spatial scales, for 

instance commuting patterns specified by industry and socio-economic group which 

allow segmented modelling of commuter behaviour.  
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