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1 Introduction

Tests of space-time interaction detect clustering of events in space and time in excess

of “any purely spatial or purely temporal clustering” (Kulldorff, 1998, pg. 58). These

tests are widely employed in studies of crime (e.g. Knox, 2002; Grubesic and Mack,

2008) and disease (e.g. Petridou et al., 1996; Rogerson, 2001). By simultaneously

considering both the spatial and temporal dimensions of the event patterns, these

methods are capable of identifying certain data generating processes and, as a re-

sult, are often used to inform etiological work (Ward and Carpenter, 2000). Most of

these tests, however, dubiously assume the underlying susceptible population within

a study area to be invariant through time and across space. In settings where this

assumption does not hold, these tests will detect space-time interaction due to pop-

ulation changes in addition to interaction resulting from the data generating process

of interest. The excess interaction observed due to violating this assumption and

by failing to account for the changes in the underlying population is referred to as

population shift bias (Kulldorff and Hjalmars, 1999). Although recognized, this bias

is often not accounted for in practice and its potential impact on results is not fully

explored. This paper carries out a simulation to develop a detailed understanding of

the impact of population shift bias on three of the most common tests of space-time

interaction: the Knox (1964), Mantel (1967), and Jacquez (1996) tests. Addition-

ally, the simulation demonstrates that contrary to prior claims (i.e. Kulldorff and

Hjalmars, 1999; Aldstadt, 2007), population shift bias is problematic even in studies

with a short temporal extent. To these ends, we simulate events within the dynamic

population of a hypothetical metropolitan landscape over the course of one day. We

then quantify the amount of population shift bias affecting each of the space-time

interaction tests for a number of different population movement scenarios.

2 Interaction Tests

The space-time interaction tests considered in this study are described in further

detail below. The methods have been implemented by the authors in Python and are

available in the open-source space-time analysis software, PySAL (Rey and Anselin,
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2010). Note that in all cases we employ Euclidean distance metrics. Also, events

are never considered adjacent to or neighbours of themselves.

To calculate the Knox (1964) test for space-time interaction, critical space and

time distance thresholds (δ and τ , respectively) defining adjacency between events

are specified by the user. The test statistic is then calculated as the count of event

pairs that are adjacent in both time and space. Formally, the test statistic is specified

in Equation 1, where n = number of events, as = adjacency in space, at = adjacency

in time, ds = distance in space, and dt = distance in time.

X =

n�

i

n�

j

asija
t
ij (1)

asij =

�
1, if dsij < δ

0, otherwise

atij =

�
1, if dtij < τ

0, otherwise

The Mantel test is a modification of the Knox test that considers the space

and time distances between all pairs of events, and not just those within critical

thresholds (Mantel, 1967). The test statistic is the sum of the products of the

spatial and temporal distances between all event pairs in the dataset. The statistic

is specified in Equation 2, where, again, ds and dt denote distance in space and time,

respectively.
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In an effort to address shortcomings of the previous two methods, Jacquez (1996)

developed a test using a similar form, based on nearest neighbour distances. The

test locates the k nearest neighbours in both space and time for all events and

then counts those common to both dimensions for individual events. Formally, the

statistic, Jk is defined in Equation 3, where n = number of cases; as = adjacency

in space; at = adjacency in time.

Jk =

n�

i

n�

j

asijka
t
ijk (3)

asijk =

�
1, if event j is a k nearest neighbour of event i in space

0, otherwise

atijk =

�
1, if event j is a k nearest neighbour of event i in time

0, otherwise

To assess the significance of the results for each of these tests, a Monte Carlo ap-

proach is traditionally used where in each permutation the temporal coordinates are

shuffled and the statistic is recalculated. This generates a distribution of potential
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values for the statistic (specific to the observed event pattern), which is then used

to assess the pseudo-significance of the observed test statistic value. While this ap-

proach is appropriate in situations where the susceptible population is static across

time, it is inappropriate when the distribution changes heterogeneously through time

and space. Using this method in such a context introduces the population shift bias

mentioned above.

3 Methods

This study measures the bias introduced by failing to account for shifts in the sus-

ceptible population for a hypothetical metropolitan area over the course of one day.

To measure the bias, events (i.e. crimes, illnesses) are randomly generated within

the population in each of four daily movement scenarios: high movement (where 98%

of the individuals change spatial unit for some period during the day); moderate

movement (59% change unit); low movement (35% change unit); no movement (all

individuals remain within unit). The metropolitan area has a population of 640,000

divided equally among its 40 spatial units (see Figure 1). In each of the dynamic

scenarios, the population in the spatial units varies heterogeneously over the course

of the day. Some spatial units gain population (employment or shopping locations)

at certain points of the day while others lose population (bedroom communities).

Additionally, we consider the same scenarios with an additional influx of 400,000

individuals to the metro (visitors or commuters) from the periphery during the day.

Gaining Units
Losing Units

0 2 41 KM

Figure 1: Simulation study area.
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To estimate the population shift bias, we follow the methodology of Kulldorff

and Hjalmars (1999). For our experiment, this means events are randomly assigned

to spatial units in the metro at different hours in the day based on a probability

proportional to the population of the spatial unit at each hour of the day. In this

example, all individuals were assumed to be susceptible to the events. For each

movement scenario, 1000 replications are run where 100 events are randomly simu-

lated. The significance of the test statistics in each replication is assessed using the

Monte Carlo approach described above. For each scenario and test combination, the

proportion of significant replications (where α = 0.05 and 0.01) is recorded. Because

there is no population movement in the static scenario, there is no population shift

bias; as a result, the proportion of significant replications for this scenario serves

as our baseline. The difference between the proportion of significant replications

observed for the dynamic population scenarios and that observed for the static pop-

ulation scenario measures the amount of population shift bias present in each of

the tests, for each scenario. The parameters used in this study for the Knox and

Jacquez tests are outlined in Table 1, no additional parameters were specified for

the Mantel test.

4 Results

The results, shown in Table 1, illustrate the sizable impact population shift bias

may have on these tests of space-time interaction, even for the short temporal extent

considered. Generally speaking, the Knox test was most affected by the population

shifts. As the critical distances used by the test increased, observed bias increased

as well, in one case up to 95 times the α value. Although this extreme example

is partly an artifact of our experimental design, which intended to promote any

potential bias by concentrating mobile individuals in the gaining spatial units, the

scenarios designed are not implausible and neither, therefore, are the estimates of

the bias. Researchers employing this test, especially in an urban context, need to be

aware of this susceptibility. Although still affected, the results for the Jacquez test

displayed the least amount of bias, likely due to the relative nature of the nearest

neighbour distance metric employed by the test. For all tests, any bias observed

was increased by the addition of the influx population to the metro area.

The take-home message from this work is that population shift bias must be

accounted for when employing tests of space-time interaction regardless of the test

employed or the duration of the study. This can be accomplished by using an

unbiased form of the test which takes population shift into account. A general

template for such unbiased tests is described in Kulldorff and Hjalmars (1999).

Future research should concentrate on specific implementations of this form.
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Without Influx Population With Influx Population

Low Movement Moderate Movement High Movement Low Movement Moderate Movement High Movement

Test Parameters α = 0.05 α = 0.01 α = 0.05 α = 0.01 α = 0.05 α = 0.01 α = 0.05 α = 0.01 α = 0.05 α = 0.01 α = 0.05 α = 0.01

Jacquez

k = 1 0.009 0.006 0.032 0.016 0.108 0.058 0.030 0.005 0.033 0.020 0.103 0.053

k = 2 0.008 -0.004 0.035 0.011 0.139 0.073 0.020 0.009 0.044 0.028 0.167 0.116

k = 3 0.007 0.001 0.050 0.022 0.257 0.140 0.045 0.017 0.074 0.037 0.241 0.149

k = 4 0.003 -0.005 0.039 0.022 0.302 0.176 0.038 0.012 0.096 0.040 0.299 0.188

k = 5 0.007 -0.003 0.049 0.019 0.390 0.228 0.065 0.019 0.121 0.047 0.376 0.244

Knox

δ = 0.5, τ = 0.25 0.030 0.021 0.024 0.002 0.062 0.045 0.022 0.017 0.028 0.017 0.082 0.100

δ = 1.0, τ = 0.25 0.016 0.009 0.038 0.016 0.125 0.062 0.054 0.030 0.068 0.031 0.158 0.118

δ = 2.0, τ = 0.25 0.022 0.023 0.035 0.033 0.170 0.084 0.062 0.031 0.092 0.049 0.216 0.153

δ = 5.0, τ = 0.25 0.024 0.009 0.071 0.028 0.327 0.171 0.094 0.031 0.127 0.054 0.383 0.223

δ = 0.5, τ = 0.50 0.011 0.012 0.042 0.023 0.160 0.079 0.045 0.032 0.068 0.042 0.200 0.147

δ = 1.0, τ = 0.50 0.017 0.011 0.056 0.026 0.266 0.146 0.064 0.034 0.141 0.086 0.319 0.220

δ = 2.0, τ = 0.50 0.031 0.016 0.088 0.048 0.411 0.261 0.107 0.052 0.237 0.116 0.473 0.348

δ = 5.0, τ = 0.50 0.038 0.016 0.154 0.067 0.661 0.499 0.181 0.075 0.349 0.179 0.766 0.599

δ = 0.5, τ = 1.00 0.025 0.004 0.079 0.040 0.332 0.207 0.097 0.043 0.180 0.086 0.416 0.303

δ = 1.0, τ = 1.00 0.043 0.016 0.116 0.050 0.528 0.376 0.144 0.067 0.276 0.149 0.587 0.461

δ = 2.0, τ = 1.00 0.052 0.019 0.134 0.076 0.709 0.575 0.224 0.104 0.410 0.230 0.777 0.686

δ = 5.0, τ = 1.00 0.079 0.039 0.249 0.127 0.896 0.847 0.337 0.176 0.603 0.421 0.926 0.905

δ = 0.5, τ = 2.00 0.017 0.009 0.036 0.022 0.433 0.250 0.115 0.050 0.185 0.089 0.501 0.364

δ = 1.0, τ = 2.00 0.028 0.011 0.094 0.042 0.649 0.502 0.173 0.072 0.309 0.170 0.737 0.604

δ = 2.0, τ = 2.00 0.044 0.016 0.150 0.081 0.790 0.704 0.261 0.123 0.451 0.277 0.852 0.821

δ = 5.0, τ = 2.00 0.071 0.042 0.249 0.150 0.908 0.898 0.362 0.203 0.638 0.487 0.929 0.950

Mantel 0.075 0.026 0.139 0.056 0.592 0.407 0.181 0.086 0.216 0.093 0.569 0.384

Table 1: Population shift bias for all combinations of tests and population movement scenarios.
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