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1. Introduction 
There exists a numerical analysis of a road network from various viewpoints: the 
morphological proximity of road networks to typical geometric graphs (Tanimura and 
Furuyama 2002, Watanabe 2005), the efficiency of travel in a road network (Koshizuka 
and Kobayashi 1983), the street hierarchies from the multiple perspectives of topology 
and geometry (Jiang 2009) and so on. In the present study, we employ geometric graphs 
based on β-skeleton, which change in response to variations in parameter values, and 
attempt to analyze road networks by considering the morphological proximity 
(topological perspective) and the efficiency of travel (geometric perspective). 

2. Road Network Analysis from Topological Perspective 

2.1 Concept of β-skeleton  
Given a spatial distribution of points pi (i = 1, 2, …, n) in two-dimensional space, let us 
consider various ways of creating geometric graphs that connect the points to each other. 
As shown in fig. 1, let us assume that two circular arcs pass through the arbitrary points 
p1 and p2. The size of the closed region E enclosed by the arcs (the crosshatched portions 
in fig. 1) varies with the parameter β (≥ 0), such that the area of E increases as β increases. 
Then, if some third point is included within E, then the segment with endpoints p1 and p2 
is not an edge in the graph, whereas if no such third point is included, the graph contains 
this segment as an edge. 

A geometric graph created according to this rule is called the β-skeleton (Wang et al. 
2003, Bose et al. 2009). It is well established that the case β = 0 corresponds to the 
Delaunay triangulation of the set of points, β = 1 corresponds to the Gabriel graph, and β 
= 2 corresponds to the relative neighbourhood graph. 
 

GeoComputation 2011

221

Session 5A: Network Complexity



 
 

Figure 1. Definition of β-skeleton. 
 

2.2 Definition of agreement rate 
Let us define an “agreement rate” as an index expressing how closely the morphology of 
an actual road network resembles that of a geometric graph. The set of edges making up 
the road network is denoted by R and that of the geometric graph is denoted by G. The 
number of elements in the set of edges is written as the function n( ). Then, we define the 
agreement rate (C-ratio) as the number of elements in R⋂G divided by the number of 
elements in R⋃G, that is, n(R⋂G)/n(R⋃G). 

2.3 Maximum agreement rate and value of β 
The greater Tokyo metropolitan region was chosen for the study area, and subdivided 
into eight sub-regions shown in fig. 2. 

Geometric graphs were created for various values of β, and the resulting agreement 
ratios with respect to the actual road network were calculated (fig. 3). The value of β 
yielding the maximum agreement rate is labelled β1. Table 1 shows the maximum 
agreement rate and the corresponding β1. As shown, the values of β1 for the sub-regions 
lie between 1.0 and 1.5. 
 

 
 

Figure 2. Study area. 
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Figure 3. Agreement rate as function of β (sub-region 4). 
 

Sub-region Maximum 
agreement rate 

β1 

1 0.610 1.40 
2 0.643 1.45 
3 0.639 1.15 
4 0.693 1.40 
5 0.623 1.20 
6 0.614 1.20 
7 0.637 1.30 
8 0.656 1.25 

 
Table 1. Maximum agreement rate and the corresponding value of β1. 

 

3. Road Network Analysis from Geometric Perspective 

3.1 Concept of spanning ratio 
The spanning ratio (SR) has been suggested as an index expressing the travel efficiency 
through a network (Wang et al., 2003). SR is defined as the value of the distance L 
between two points on the network paths divided by the Euclidian distance D between the 
points. In other words, the greater the values SR, the lower the travel efficiency in the 
network.  

3.2 Spanning ratio of road network and geometric graph 
The intersection points in the road networks R in the previous section were used to create 
Geometric graphs for various values of β (1.0 ≤ β ≤ 2.0). Next, two intersections at a time 
were extracted at random and the value of SR was calculated for that pair. The mean m 
and standard deviation σ were calculated for the SR of 1,000 point pairs for each graph. 
The results showed that m is an increasing linear function of β (m = aβ + b; a and b are 
unknown parameters). The increase in m is due to Geometric graphs with higher values 
of β having lower numbers of edges, decreasing the efficiency of spatial motion in the 
graphs. 
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Also, the results showed that the value of σ grows with the value of β. The growth of σ 
indicates that there is high variation in the travel efficiency between point pairs, that is, 
that there is a large difference between the Euclidian distance and the distance in the 
network between point pairs. Therefore, it is preferable to conduct analysis of spatial 
motion in regions with low road densities on the basis of distance in the network rather 
than on the basis of Euclidian distance. 

The mean m of SR for 1,000 point pairs was calculated for the actual road network of 
each sub-region. The values of β (β2) were then inversely estimated using m by the 
equations (β2 = (m – b)/a). Specifically, the values of β for the geometric graph indicating 
the mean values of SR equivalent to that of the actual road network were calculated. 
These values are shown in table 2 along with the corresponding values for parameters of 
regression equations. As shown, in all the sub-regions analyzed here, β2 remains within 
the range 1.0 to 1.5, the same as β1. 
 

Sub-region m a b R2 β2 
1 1.224 0.217 0.913 0.993 1.440 
2 1.196 0.184 0.934 0.993 1.432 
3 1.155 0.184 0.946 0.981 1.146 
4 1.166 0.145 0.968 0.993 1.363 
5 1.184 0.213 0.906 0.998 1.310 
6 1.194 0.238 0.874 0.994 1.350 
7 1.178 0.202 0.914 0.989 1.310 
8 1.210 0.207 0.918 0.995 1.374 

 
Table 2. Value of β2 for the geometric graph whose travel efficiency is equivalent to that 

of road network. 
 

3.3 Relation between β1 and β2 
Figure 4 shows relationships between the β1 (value of β for morphological proximity) and 
the β2 (value of β for similar travel efficiencies). In sub-regions 1, 5, and 6, suburban 
areas with low densities of roads, β1 < β2 holds. In these areas, there is a risk that using 
Geometric graphs (the geometric graph for β1), which have been created on the basis of 
morphological proximity, will provide erroneous predictions of travel efficiency. 
Specifically, the travel efficiency in the actual road network is likely to be lower than that 
in the geometric graph created on the basis of morphological proximity. On the other 
hand, β1 and β2 are roughly similar in sub-regions 2, 3, 4, and 7, the downtown Tokyo 
area, where the density of roads is high. 
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Figure 4.  β1 versus β2 (numerals are sub-region numbers). 
 

4. Summary and Conclusions 
We carried out an analysis of a road network from each of two viewpoints, network 
morphology and travel efficiency, by using the concept of β-skeletons. The following 
findings were identified: 

(1) The value of β in a geometric graph with a maximal morphological proximity to an 
actual road network is in the range 1.0 to 1.5 for the networks examined here. 

(2) The agreement rate between a road network and a geometric graph is less in 
mountainous suburban areas or similar areas with low densities of roads. 

(3) The travel efficiency (SR) between two points shows more variation in suburban 
areas with low densities of roads; therefore, when investigating the travel efficiency 
between locations, the analysis must employ the distance in the network rather than the 
Euclidian distance between the points. 

(4) The value of β when there is high morphological proximity between a road 
network and a geometric graph (β1) was nearly equal to the value of β when there is a 
strong similarity between the travel efficiencies in the actual network and the graph (β2) 
in the central part of Tokyo. However, β1 < β2 in the Tokyo suburbs, indicating that an 
analyst must take account of the higher travel efficiency in the geometric graph mostly 
strongly resembling the actual road network than that in the actual road network itself. 

In this paper, we compared the properties of geometric graphs to real road networks. 
This approach can be extended for the general modelling of various numerical 
simulations, as well as theoretical analysis on intersections which are randomly 
distributed following the Poisson distribution. 
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