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1. Introduction

Cellular automata (CA) models have long been agpbesimulate the evolution of urban
areas. The large majority of CA models reportedhia literature make use of regular
cells derived from remote sensed images to reprdéaed use and the use of irregular
cells is scarce (Moreno et al.,, 2008, Stevens aragjibevic, 2007). However, regular
cells are not directly connected to the informatibat underlies the drivers of land use
change — population, employment, or built up arecators. We proposed a CA model
that operates over a cell structure derived froragilar cells obtained from census
blocks, which hold reliable data and can be eaddgsified for their land use (Norte
Pinto and Pais Antunes, 2010).

Calibration plays a critical role in modelling besa it connects reality to model
representation. CA model calibration has been gestlof different approaches using
different types of procedures, from sensitivity lgai to optimization-based methods.
SLEUTH (Silva and Clarke, 2002) is uses both viscaibration and a brute force
computational procedure to compare model and neteredata. Li and Yeh (2001)
coupled a CA model with an artificial neural netwdo calibrate it. Barredo et al. (2003)
used basic sensitivity analysis to calibrate thegiseng parameters for the spatial
interactions between land uses.

2. Cellular automata model

The CA model has a simple structure that derivesfthe classical formulation of CA
with the consideration of constrained land use dem#ollowing the concept introduced
by White and Engelen (1993). The model operates aveirregular cellular fabric
obtained from census blocks. Cell states are ¢iedsinto a finite set of aggregated
classes of land use. Land use interactions takee plathin a variable neighborhood
which distance value is determined through modgbredion. Transition rules intend to
incorporate planning regulations and simulate lasd change based on a composite
transition potential that takes into account celtessibility, land use suitability, and
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neighborhood interactions within the cell neighlmath, calculated by the following
expression

Po=(vexSc+xpxA+0,xN,)x&VieCseS

where, for each cellfrom the set of cell€, and for each statefrom the set of state§

Pis is the transition potential for staseof celli, S5 is the land use suitability value for
states of celli, A is the accessibility value of cellN;s is the neighborhood effect for
states of cell i considering its neighborhodd, ve is the calibration parameter for land
use suitability,yp is the calibration parameter for accessibilifys, is the calibration
parameter for the neighborhood effect, gnd the stochastic parameter. The model has
30 more calibration parameters which define thedinrelationships of neighborhood
effect interactions between each pair of land ugeserically depicted in Figure 1(a) for
attraction and Figure 1(b) for repulsion. The tistep can be defined by the user. Land
use demand is determined through the evolutioropfifation and employment densities
over time. The flowchart for the CA model is depitin Figure 2. Further details on the
structure of the model can be found in Norte Parnd Pais Antunes (2010).
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Figure 1. Generic neighborhood effect relationships

3. Calibration with particle swarm

The high number of calibration parameters indicftesuse of an optimization procedure
to ensure a good search of the solution space. cg@hibration of the CA model is
processed though an optimization procedure that adéness measure basedkappa
index from contingency matrixes (Couto, 2003). Wsedi a modified version of the
traditional kappa (namedkwoq) to avoid the distortion that would have been picmdl if
states that cannot take part in the urban dynamider example, agricultural or
ecological reserve land — were considered. Theusnmh of cells in this state would be
misleading by producing a larger — though meanswgle agreement between simulation
and reference maps.

The optimization algorithm chosen was the partseiarm (PS), which roots are in the
simulation of social behaviors, in the study of #yachronized movement of bird flocks
and fish schools (for further details please seangdy, 1997, and Parsopoulos and
Vrahatis, 2002). This algorithm is suitable for &g with a high number of dimensions
(our calibration parameters) because it has a sifggmulation which ensures that the
complex interdependences between the parameterstaiem into account in the
calibration process. The algorithm makes use oivars of p particles (from a few to
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traditionally up to 120, but with no upper limit)liafly through the search space during
iterations. The larger the swarm is, the bettersiémgrch space is searched. Each particle
hasD dimensions: in our CA model each calibration patnis represented by a PS
dimension. Hence, there will be 48 dimensions facheparticle. The algorithm retains
the position and the velocity of each particle irery iteration, calculating their new
values considering the group leader and their iddad best positions. The flowchart for
the PS algorithm is depicted in Figure 2. Note fhatare an embedded process that is
called as many times as the number of PS iteratiariplied by the number of particles.
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Figure 2. CA model (grey) and PS algorithm flowc¢har
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4. Model results

The model was tested using a set of twenty tetanees generated to simulate plausible
spatial structures. These test instances havedfgoence land use maps (initial and final)
for two moments in time, comprising information abgopulation, employment and
accessibility considering a road network. ThreengXas are depicted in Figure 3. Land
use was classified with a set of aggregate ceiéstairban low density (UL) and urban
high density (UH), non-urbanized urban areas (XWustry (1), non-urbanized
industrial areas (XI); and areas where construdgdnghly restricted (R).

Global kyvog results for the entire set of problems are degiateFigure 4. These results
can be considered good for a simulation procesgebfent of the problems achieved a
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kmos @around 0.800 or higher and 75 percent of them edex 0.750. Figure 4 also
presents the variation of the absolké@pa measure for the set of test problems. For 65
percent of the problems, the agreement exceed® @8d 95 percent exceeded 0.850.
Overall accuracy for thi&,g measure also exceeded 0.850 for 75 percent ofabes.
These values are commonly accepted as very goakmgnt between modeled and
reference situations (Barredo et al., 2003).
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Figure 3. Three examples of test instances.
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Figure 4. Globaku.q andkappa results for the set of twenty test problems.

5. Concluding remarks

The results obtained for the set of test instamtesv that the use of the PS algorithm

ensures an efficient search of good sets of caidrgparameters for the CA model. The

average value of the fitness measkyigy is high and is equal or higher than the values
founded in the literature for other CA models. @uatrdevelopments of our CA models —

focusing on a multi-scale approach — also use $he®imization for model calibration.
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