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1. Introduction  
Cellular automata (CA) models have long been applied to simulate the evolution of urban 
areas. The large majority of CA models reported in the literature make use of regular 
cells derived from remote sensed images to represent land use and the use of irregular 
cells is scarce (Moreno et al., 2008, Stevens and Dragicevic, 2007). However, regular 
cells are not directly connected to the information that underlies the drivers of land use 
change – population, employment, or built up area indicators. We proposed a CA model 
that operates over a cell structure derived from irregular cells obtained from census 
blocks, which hold reliable data and can be easily classified for their land use (Norte 
Pinto and Pais Antunes, 2010). 

Calibration plays a critical role in modelling because it connects reality to model 
representation. CA model calibration has been a subject of different approaches using 
different types of procedures, from sensitivity analysis to optimization-based methods. 
SLEUTH (Silva and Clarke, 2002) is uses both visual calibration and a brute force 
computational procedure to compare model and reference data. Li and Yeh (2001) 
coupled a CA model with an artificial neural network to calibrate it. Barredo et al. (2003) 
used basic sensitivity analysis to calibrate the weighting parameters for the spatial 
interactions between land uses. 

2. Cellular automata model  
The CA model has a simple structure that derives from the classical formulation of CA 
with the consideration of constrained land use demand, following the concept introduced 
by White and Engelen (1993). The model operates over an irregular cellular fabric 
obtained from census blocks. Cell states are classified into a finite set of aggregated 
classes of land use. Land use interactions take place within a variable neighborhood 
which distance value is determined through model calibration. Transition rules intend to 
incorporate planning regulations and simulate land use change based on a composite 
transition potential that takes into account cell accessibility, land use suitability, and 
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neighborhood interactions within the cell neighborhood, calculated by the following 
expression  
 

( ), , , , C, Si s P i s P i P i sP ν S χ A θ N ξ i s= × + × + × × ∀ ∈ ∈  

 
where, for each cell i from the set of cells C, and for each state s from the set of states S, 
Pi,s is the transition potential for state s of cell i, Si,s is the land use suitability value for 
state s of cell i, Ai is the accessibility value of cell i, Ni,s is the neighborhood effect for 
state s of cell i considering its neighborhood Vi, νP is the calibration parameter for land 
use suitability, χP is the calibration parameter for accessibility, θP is the calibration 
parameter for the neighborhood effect, and ξ is the stochastic parameter. The model has 
30 more calibration parameters which define the linear relationships of neighborhood 
effect interactions between each pair of land uses, generically depicted in Figure 1(a) for 
attraction and Figure 1(b) for repulsion. The time step can be defined by the user. Land 
use demand is determined through the evolution of population and employment densities 
over time. The flowchart for the CA model is depicted in Figure 2. Further details on the 
structure of the model can be found in Norte Pinto and Pais Antunes (2010). 
 

 
Figure 1. Generic neighborhood effect relationships 

3. Calibration with particle swarm 
The high number of calibration parameters indicates the use of an optimization procedure 
to ensure a good search of the solution space. The calibration of the CA model is 
processed though an optimization procedure that uses a fitness measure based on kappa 
index from contingency matrixes (Couto, 2003). We used a modified version of the 
traditional kappa (named kMod) to avoid the distortion that would have been produced if 
states that cannot take part in the urban dynamics – for example, agricultural or 
ecological reserve land – were considered. The inclusion of cells in this state would be 
misleading by producing a larger – though meaningless – agreement between simulation 
and reference maps. 

The optimization algorithm chosen was the particle swarm (PS), which roots are in the 
simulation of social behaviors, in the study of the synchronized movement of bird flocks 
and fish schools (for further details please see Kennedy, 1997, and Parsopoulos and 
Vrahatis, 2002). This algorithm is suitable for dealing with a high number of dimensions 
(our calibration parameters) because it has a simple formulation which ensures that the 
complex interdependences between the parameters are taken into account in the 
calibration process. The algorithm makes use of a swarm of p particles (from a few to 
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traditionally up to 120, but with no upper limit) will fly through the search space during n 
iterations. The larger the swarm is, the better the search space is searched. Each particle 
has D dimensions: in our CA model each calibration parameter is represented by a PS 
dimension. Hence, there will be 48 dimensions for each particle. The algorithm retains 
the position and the velocity of each particle in every iteration, calculating their new 
values considering the group leader and their individual best positions. The flowchart for 
the PS algorithm is depicted in Figure 2. Note that CA are an embedded process that is 
called as many times as the number of PS iterations multiplied by the number of particles.  

 

 
Figure 2. CA model (grey) and PS algorithm flowchart 

4. Model results  
The model was tested using a set of twenty test instances generated to simulate plausible 
spatial structures. These test instances have two reference land use maps (initial and final) 
for two moments in time, comprising information about population, employment and 
accessibility considering a road network. Three examples are depicted in Figure 3. Land 
use was classified with a set of aggregate cell states: urban low density (UL) and urban 
high density (UH), non-urbanized urban areas (XU); industry (I), non-urbanized 
industrial areas (XI); and areas where construction is highly restricted (R). 
Global kMod results for the entire set of problems are depicted in Figure 4. These results 
can be considered good for a simulation process: 50 percent of the problems achieved a 
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kMod around 0.800 or higher and 75 percent of them exceeded 0.750. Figure 4 also 
presents the variation of the absolute kappa measure for the set of test problems. For 65 
percent of the problems, the agreement exceeded 0.900 and 95 percent exceeded 0.850. 
Overall accuracy for the kMod measure also exceeded 0.850 for 75 percent of the cases. 
These values are commonly accepted as very good agreement between modeled and 
reference situations (Barredo et al., 2003). 
 

 
Figure 3. Three examples of test instances. 
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Figure 4. Global kMod and kappa results for the set of twenty test problems. 

 

5. Concluding remarks 
The results obtained for the set of test instances show that the use of the PS algorithm 
ensures an efficient search of good sets of calibration parameters for the CA model. The 
average value of the fitness measure kMod is high and is equal or higher than the values 
founded in the literature for other CA models. Current developments of our CA models – 
focusing on a multi-scale approach – also use the PS optimization for model calibration. 

6. Acknowledgments 
Nuno Pinto wishes to acknowledge the support received from Fundação para a Ciência e 
a Tecnologia under grant SFRH/BD/37465/2007. 

7. References  
Barredo, J., Kasanko, M., McCormick, N. & Lavalle, C. (2003) Modelling dynamic spatial processes: 

simulation of urban future scenarios through cellular automata. Landscape and Urban Planning, 
64(3), 145-160. 

Couto, P. (2003) Assessing the accuracy of spatial simulation models. Ecological Modelling, 167(1-2), 
181–198. 

Kennedy, J. (1997) The particle swarm: Social adaptation of knowledge. Proceedings of the 1997 IEEE 
International Conference on Evolutionary Computation (ICEC '97), Indianapolis, IN, 303-308. 

Li, X. & Yeh, A. G. O. (2001) Calibration of cellular automata by using neural networks for the simulation 
of complex urban systems. Environment and Planning A, 33(8), 1445-1462. 

Moreno, N., Ménard, A. & Marceau, D. J. (2008) VecGCA: a vector-based geographic cellular automata 
model allowing geometric transformations of objects. Environment and Planning B: Planning and 
Design, 35(4), 647-665. 

Norte Pinto, N. & Pais Antunes, A. (2010) A cellular automata model based on irregular cells: application 
to small urban areas. Environment and Planning B: Planning and Design, 37(6), 1095-1114. 

Parsopoulos, K. E. & Vrahatis, M. N. (2002) Recent approaches to global optimization problems through 
Particle Swarm Optimization. Natural Computing, 1, 235–306. 

Silva, E. & Clarke, K. C. (2002) Calibration of the SLEUTH urban growth model for Lisbon and Porto, 
Portugal. Computers, Environment and Urban Systems, 26(6), 525-552. 

Stevens, D. & Dragicevic, S. (2007) A GIS-based irregular cellular automata model of land-use change. 
Environment and Planning B: Planning and Design, 34(4), 708-724. 

White, R. & Engelen, G. (1993) Cellular automata and fractal urban form: a cellular modelling approach to 
the evolution of urban land-use patterns. Environment and Planning A, 25(8), 1175-1199. 

0.600

0.650

0.700

0.750

0.800

0.850

0.900

0.950

1.000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Problem

kMod kappa OverAllAcc kMod

GeoComputation 2011

34

Session 1B: Genetic Algorithms & Cellular Automata Modelling


