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1. Introduction  
Cellular Automata (CA) models are among the most popular models for simulating 
spatial change and they have been developed and applied intensively during the past two 
decades. Two main features made CA interesting for urban studies, ever since they were 
introduced by Waldo Tobler in the late 1970s (Tobler, 1979): first, their inherent 
spatiality which suits the simulation of a wide range of geographic phenomena; second, 
the possibility of simulating complex patterns of, for example, land use starting from a 
simple conceptual framework that includes the definition of a cell space (form), a 
neighborhood (interaction), and a finite set of transition rules (behaviors) applied to a 
finite set of cell states (land uses). This conjugation of form and function make CA 
models suitable for capturing the contribution of different phenomena to the complex 
processes of urban change.  

These models are commonly used to simulate land use change at a regional or 
metropolitan level considering land use dynamics at a local level (Barredo and 
Demicheli, 2003, Silva and Clarke, 2005). They consider increasingly smaller cells, 
making use of the high resolution of today’s remotely sensed images to capture many 
interactions that occur at a very large scale. Regular cells are used at the local scale 
(pixels) and at a regional scale, as aggregations of smaller cells (Van Vliet et al., 2009).  

We address these issues of scale and cell form by proposing a macroscale CA model 
that tries to capture aggregated land use change at a regional level. We use administrative 
units – municipalities or similar units, varying with the national context – as irregular 
cells to simulate land use change considering population and employment growth and 
accessibility measures at a regional scale. The use of irregular cells, regardless of the 
scale, is scarce in the literature (Stevens and Dragicevic, 2007, Moreno et al., 2008). It 
ensures a good link between form and reliable data, an approach that has been 
successfully applied at the local scale (Norte Pinto and Pais Antunes, 2010).  

Scale has been debated over the years. The evolution of computation allowed 
researchers to downscale from the typical large scale models of the 1950s and 1960s to 
the high resolution models of our decade. The debate over modeling scale started with the 
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famous Requiem for large-scale models (Lee, 1973), and continued over the years, with a 
new moment in the mid 1990s when again the issue was brought to the agenda (Lee, 
1994, Klosterman, 1994). Recently, there is again a new interest on scale, focusing also 
on CA models (Ménard and Marceau, 2005, Benesson, 2007, White, 2007, Briassoulis, 
2008, Verburg et al., 2008).  

2. Macroscale CA model  
The model uses municipalities (or similar administrative units) as cells. Cell states are 
classified into a finite set of artificial land area, accounted as a percentage of the total cell 
area. Land use interactions take place within a variable neighborhood which distance 
value is determined through model calibration. Transition rules intend to simulate spatial 
interaction based on a transition potential functional that depends on the population, the 
employment, and a function of distance over the road network, calculated by the 
following expression: 
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where, for each cell i from the set of cells C, Vi is the transition potential for cell i, Pi is 
the number of residents in cell i, Ei is the number of registered employees in cell i, di,j is 
the distance between cells i and j (from the set of cells C) measured by the road network, 
αP is a calibration parameter and β is the accessibility calibration parameter. In each time 
step, cells are selected by the model for urbanization though a measure of its relative 
probability (taking into consideration all cells) regarding the transition potential value, 
calculated through an application of the logit model as follows: 
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where, for each cell i from the set of cells C, Ui is the relative probability value of cell i, 
Vi is the transition potential for cell i, and αL is the calibration parameter of the logit 
model. 

The model is calibrated through an optimization procedure based on the particle 
swarm (PS) algorithm that uses as fitness measure the kappa index for contingency 
matrixes. PS makes use of a swarm of p particles that will fly through the solution space 
during n iterations. Each particle has D dimensions: in our CA model each calibration 
parameter is represented by a PS dimension. The algorithm retains the position and the 
velocity of each particle in every iteration, calculating their new values considering the 
group leader and their individual best positions. Note that CA are an embedded process 
that is called as many times as the number of PS iterations multiplied by the number of 
particles.  
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3. Application to the Metropolitan Area of Barcelona  
The Metropolitan Area of Barcelona (MAB) is composed by 164 municipalities which 
vary considerably in area, population, and employment. The city of Barcelona heads a 
complex set of mid-size and small urban systems which group urban areas and their 
hinterlands with their own functional relationships.  

The model was applied to MAB in order to simulate the allocation of urbanized land 
over the municipalities, considering an aggregate value of population and employment 
density as limits for land demand. The model was calibrated using data from the censuses 
of 1991 and 2001 for population and employment and using aggregated land use 
information derived from Corine Land Cover for the same years. The model reached a 
value of kappa of 0.427 which represents a moderate agreement. 
 

 
Figure 1. Model results for the MAB for population, employment, and urbanized areas. 

 

4. Concluding remarks 
This macroscale CA model is part of an integrated multiscale CA model that aims to 
capture different phenomena that occur at different spatial and time scales. The 
macroscale model aims to simulate the evolution of land use demand by modeling the 
areas of urbanized land at the municipality level as a function of the location of 
population and employment, considering accessibility. The values of urbanized land will 
be considered as land use demand at the microscale, and will be used as a constraint to a 
more traditional, local scale CA model 
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