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1. Introduction  
A pressing problem in biodiversity studies is to find the optimal strategy for protecting the 
species given limited resources. In order to design such a strategy it is necessary to understand 
associations between spatial distribution of biodiversity and environmental factors. A 
relationship between a response variable (a suitable measure of biodiversity) and predictor 
variables (measures of environmental factors) is certain to be complex as it must reflect a non-
stationary character of an observed dependence. As a result one can expect an existence of 
several different biodiversity regimes – sets of environmental conditions locally associated with 
the levels of biodiversity measure. Multi-regime association cannot be discovered using standard 
methods based on linear regression; here we propose using decision tree learning methodology to 
discover different regimes of association between environmental variables and richness of bird 
species (a particular measure of biodiversity) across the contiguous United States.  
 
Fig.1 shows a map depicting spatial distribution of richness (R) of bird species across the US. 
Distribution of R has a strong bimodal character effectively dividing the United States into high 
richness (HR) and low richness (LR) regions using a threshold value of R=148; this value 
corresponds to a location of the minimum that clearly separates the two maxima of bimodal 
distribution of R. The HR region is not simple-connected; instead it consists of several 
geographically distributed pieces. The premise is that observed distribution of R associates with 
locally-specific combination of values of environmental variables. We find those associations 
using a data mining technique based on decision tree learning. This is an expansion of a method 
proposed by White and Sifneos (2002).  

 2. Methods  
We consider a set of 32 predictor variables pertaining to terrain, climate, landscape metrics, land 
cover, and environmental stress and hypothesized to have potential influence on bird richness. 
These variables constitute a subset of a larger dataset (White et al., 1999) and are given on a grid 
consisting of 12,337 hexagons covering the contiguous United States. A value of response 
variable R is the count of unique species in every hex. Breeding Bird Survey (BBS) grids (Sauer 
et al. 1995) representing distribution of individual bird species was used to calculate R; the 
values range from R=21 to R=230. 
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Figure 1. Map of richness, R, of bird species across the contiguous United States. 

 
Data mining technique of decision tree learning (Loh, 2008) uses a decision tree as a predictive 
model. The model recursively partitions a set of predictor variables until each partition, 
represented as a terminal node of the tree, contains only data instances (hexes in our dataset) 
from which a conclusion about the response variable can be made with relatively high accuracy.  
A unique feature of the tree model is its interpretability; other models often possess good 
prediction accuracy, but they act like black boxes and do not provide insight into the roles of the 
predictor variables. Our focus here is not on a predictive accuracy of such model (after all, the 
values of R are known for every hex) but rather on the data partitions that we connect with 
different biodiversity regimes. We build two conceptually different models. First, we build a 
regression tree model which is a piecewise constant estimate of a regression function. Data is 
partitioned so as to increase the accuracy of linear regression in each partition. In each terminal 
node an average value of R serves as a predictor. Nodes are labeled as HR if they contain 
predominantly high values of R and LR if they contain predominantly low values of R. Second, 
taking advantage of a bimodal character of the distribution of R, we start by labeling hexes into 
HR and LR using a threshold value of Rthres=148, and then build a classification tree. In 
classification tree data is partitioned so as to increase the label purity of subdivisions. Nodes are 
labeled as HR if they contain majority of HR hexes and LR if they contain majority of LR hexes. 
We used GUIDE algorithm (Loh, 2008) to build regression and classification trees having 12 
terminal nodes each. The number of terminal nodes is determined automatically by a process of 
cross validation. 

3. Results  
Results of the regression tree model (RTM) are shown on Fig.2. HR nodes and spatial regions 
corresponding to them are shown in warm colours while LR nodes and spatial regions 
corresponding to them are shown in cool colours. The overall accuracy of the RTM is ~80%. The 
major split of dataset is on the value of July mean temperature. Hexes with July temperatures <= 
21.8 C are conducive to HR; all but one node in the left main fork of the tree are HR nodes and 
there are no HR nodes in the right main fork of the tree. Surprisingly, despite a complex 
character of the dataset, great majority of “higher richness” hexes fulfil a single (JulyMeanTemp 
<= 21.82) predicate. Each HR node groups predominantly HR hexes and thus can be identified 
with a particular environmental regime conducive to high richness of species.  
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Figure 2. Map of richness of bird species environmental regimes calculated using regression tree. 
Tree nodes are shown as circles with ID numbers within them. Quantities on the left site of 
terminal nodes give the number of hexes in the node, quantities immediately below terminal 
nodes give an average value of R in the node, and the 0/1 labels indicate whether node represents 
HR regime or LR regime. 
 
Results of classification tree model (CTM) are shown on Fig.3. The overall accuracy of the CTM 
is ~85%. The major split of dataset is on the value of January mean temperature, but HR and LR 
nodes are split between the two main forks of the tree. The HR node #9 accounts for majority of 
HR hexes.  
 

4. Conclusions  
The two models represent different means of decision tree learning and yield seemingly different 
partitionings of the dataset. From a prediction point of view they are equally useful although the 
CTM has a small edge in accuracy. From a point of view of discovering environmental regimes 
of biodiversity, each model provides what, at first glance, appears to be a different partitioning of 
the environmental data. However, closer examination reveals some similarities in spatial extent 
between a number of nodes in the two partitions. For example, spatial footprint of node #28 in 
the CTM resembles the footprint of node #12 in the RTM. Other examples include: CTM node 
#17 and RTM node #20, eastern portion of CTM node #9 and RTM node #8.  These 
correspondences exist because a tree node is described in terms of a series of consecutive 
predicates, but a similar partition can be feasibly described by a different series of predicates if 
the predictor variables involved in the predicates are correlated.   
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Figure 3. Map of richness of bird species environmental regimes calculated using classification 

tree. See also caption to Fig. 2. 
 
Analysis of the two models reveals existence of four regimes of high richness of bird species that 
transcend specificity of the models. They are: (1) Southern regime (RTM node #12 and CTM 
node #28), (2) Northern regime (RTM  node #9  plus portions of node  #8 and RTM portion of 
node #9), (3) Mountain regime (RTM nodes #22, #21 and CTM nodes #32, portion of #9), (4) 
Pacific Coast regime (RTM portion of node #8 and CTM node #13). Fig.4 shows spatial extents 
of these regimes and their characterization in terms of predictors shown as parallel coordinates-
like graphs. These characterizations provide compact but comprehensive description of each 
regime. For example, the Southern regime is not only characterized by climatic variables, as 
indicated by predicates in both regression and classification trees, but also by presence (predictor 
17) and absence (predictors 18 and 19) of specific land cover classes. 
 
Decision tree-based methodology, as presented here, can be applied to a broad range of non-
stationary spatial problems where there is a need to identify different regimes of dependence 
between predictors and response. 
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Figure 4. (Top) Map of four regimes of high diversity of bird species in the United States. 
(Bo es, 
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