
Geocomputation over the Emerging Heterogeneous Computing Infrastructure

Xuan Shi

Department of Geosciences | University of Arkansas | Fayetteville, AR 72701

Abstract

Spatiotemporal thinking and analysis has been a common interest in a growing research

community aiming at understanding the spatial patterns and dynamics in the changing

geographical phenomena. While there is an increasing awareness of the importance in the

empirical analysis over varied space-time dimensions, the rich details of space-time complexity

remain largely unexplored because of the constraint in geocomputation capacity in response to

the challenge of data intensive computing.

While heterogeneous computer architecture is the emerging and future trend as the computing

infrastructure and environment, new hardware systems leads to major changes and challenges in

algorithm re-design and software re-engineering in order to accelerate scientific computation. In

the geographic information science (GIScience) community, a generic research question has

arisen: How can existing geospatial data and computation be adapted into the architecture of

Cyberinfrastructure (CI)?

This paper reviews the evolutional trend in hardware advancement and discusses how to utilize

heterogeneous computer architecture and system, which contains multiple modern Graphics

Processing Units (GPUs) and Central Processing Units (CPUs), for geocomputation. Based on

some exploratory research initiatives sponsored by the National Science Foundation (NSF), it

can be concluded that renovating both of geospatial data structure and geocomputation

algorithms will have equal significance in the transformative process in response to the above

generic research question and challenge.

Modern Cyberinfrastructure is a multiprocessing environment for parallel computing that leads

to significant acceleration in scientific computation high performance. Traditionally geospatial

data structures, formats and algorithms have been designed for serial programs implemented on

desktop computers. Consequently, existing geospatial data and computational solutions may not

be appropriate in the parallel computing environment. Many conventional approaches may have

been weak in practice partly due to the lack of scalability in handling large scale data defined in

the common geospatial data formats. When much attention and effort were placed on algorithm

optimization, the bottleneck originated in the data structure might be ignored.

In parallel computing environment, obviously any hidden or inexplicit information could be a

barrier that prevents the efficient data and task partition. In practice, shapefile is a prevalent

vector data format but not designed for parallel computing. Looping through a large number of

features to retrieve the required but hidden information in a sequential process is not a good

solution, especially for parallel computing. As a result, a few prior works exploited a blind

process that manipulated the data without knowing the hidden information. In this case, the tiled

approach is a typical solution. Without knowing the details about the input datasets, all data are

split based on a uniform grid. Data within one grid cell can be processed by a computing node.

Since spatial features are distributed unevenly in the space, the QuadTree approach was adopted

to improve the load balance issues that arose in the uniform grid approach.

In general, the tiled approach may significantly increase the overhead and difficulty, for

example, in polygon overlay computation. For any one of the overlay computations using

topological operators of intersect, difference, union, and XOR, the tiled approach will actually

result in three operations. Splitting the features based on the grid cell boundary is the first step.

Implementing the overlay operation in each grid cell is the second. Merging the features that are

separated in different grid cells to generate the output product is the last step. The more levels of

grid that are generated, the more overheads are expected. Without an appropriate data structure

and format, optimizing algorithm for overlay computation may not lead to transformative

solution to scale up the geocomputation to achieve high performance. Such a result may explain

why polygon overlay computation was regarded as a killer application in parallel computing.

In geocomputation, raster data consists of rows and columns of cells and has been commonly

utilized in spatial modeling and simulation. Although the divide and conquer strategy may work

in the parallel computing environment by breaking down a matrix grid into multiple segments,

significant re-design of both the data structure and algorithm may be required to enable

parallelism and scalability. For example, as a common scenario, a spatial simulation is

implemented by calculating the multi-dimensional matrix and assigning the accumulated results

to another matrix with a different dimension. In serial programs, the value in each cell of the

result matrix can be updated with the new value after each calculation. In parallel computing

environment, however, at a given time-stamp, one cell in the result matrix cannot be assigned by

multiple values. For this reason, such a computation may have to be re-designed by two separate

operations, a combination of a parallel process and a serial process, or two parallel processes, in

which a new data structure has to be designed to store the intermediate computing results.

Algorithm re-design and software re-engineering may be a significant challenge in order to

efficiently deploy the high performance computing power over the heterogeneous computer

architecture, in which GPUs are the accelerators. For example, Compute Unified Device

Architecture (CUDA) is NVIDIA’s parallel computing architecture for GPGPU application

development. In this case, the CPU is referred to as a host, while an individual GPU is referred to

as a device. The host program may have more than one sequential procedures running on the

CPU or host. The kernel is the function that runs on the device and is executed by an array of

threads, while all threads on the device or GPU can run the same code concurrently. CUDA has

specific syntax to specify whether a function is executed on the host or on the device and

whether it is callable from the host or from the device. A __host__ function can be executed on

the host, and is callable only from the host. A __device__ function can be executed on the

device, and is callable only from the device. A __global__ function can be executed on the

device, but is callable only from the host. Although CUDA is an extension to the C programming

language, significant re-engineering is thus inevitable along with algorithm re-design when

transforming the serial programs into parallel programs with CUDA specific syntax, which may

result in 10 times of workload in code writing. When Message Passing Interface (MPI) is used to

control and coordinate the works done over multiple GPUs, another level of complexity and

workload can be expected, especially when data communication is heavily involved. Several

exploratory works will be introduced in this paper.

