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Inferential statistical methods play an important role in uncovering underlying 

mechanisms behind land-use changes. A variety of methods have been proposed for this 

task, e.g., ordinary least square linear regression (Allen and Barnes 1985), logistic 

regression (Wu and Yeh 1997), and survival analysis (An and Brown 2008). While valuable 

insights those methods can bring, their usefulness under different conditions has rarely 

been evaluated. Most land-cover change processes involve complex features, such as 

feedbacks, chaos, and emergence (Lambin and Geist 2006), and it remains unclear how 

statistical models function in presence of those effects. Second, most statistical models are 

borrowed from other fields so their assumptions may not be fulfilled in geographical 

applications. Furthermore, data availability in terms of spatial and temporal resolutions 

may severely constrain the performance of certain models. Given these limitations, an 

assessment of the inferential power of statistical methods seems necessary. However, 

traditional assessment based on empirical case studies is inadequate because of unknown 

underlying mechanism, limited conditions, and data incompleteness. A novel approach is 

thus called for. 

 

We demonstrate an innovative use of data generated by a land-use change agent-based 

simulation model coupled with a Monte Carlo sampling of its parameter space. Agent-based 

simulation data, as opposed to empirical data, can be used to better assess statistical 

method in at least three ways: 

 

First, a simulated dataset minimizes uncertainties in method assessment. Uncertainties 

arise when assessing statistical methods applied to real data, because it is only possible to 

hypothesize what the underlying mechanisms are, by using various theories, experts’ 

opinions, and statistical evaluation methods. It is very difficult to know for certain, or to 

manipulate with experimental control, the underlying mechanisms generating a real-world 
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data set. However, by using simulation data the underlying mechanisms, drivers, and 

parameters are completely known and the ability of statistical methods to recover them 

can be accurately assessed (Hirzel, Helfer and Metral 2001). 

 

Second, comparing statistical methods on specific case studies, as has been done in 

previous work (Malanson 2005, Pontius et al. 2008), limits the application situations under 

which the methods can be explored. Different land-change processes involve different 

driver sets (Rindfuss et al. 2008, An et al. 2011), operating at various speeds (Lambin and 

Geist 2006), and having different levels of information access by land managers and users 

(Manson 2006). These factors lead to diverse land-change pathways. Acquiring an 

empirical dataset that spans a diverse set of pathways is very difficult, if possible at all, but 

relatively easy for a simulation dataset, where alteration of the simulation program’s initial 

parameters produces a range of pathways (Rindfuss et al. 2007, Clarke et al. 2007). As such, 

we can map the relative performance of each statistical technique across application 

situations. 

 

Third, the simulation approach enables full control data production and ensures data 

completeness (Neel, McGarigal and Cushman 2004, Epperson et al. 2010). Though data 

completeness is a key consideration in selecting a method (Harrell 2001), it is often limited 

spatially and temporally in real datasets, and in terms of resolution and extent of data 

coverage. To study the sensitivity of methods to these kinds of limits, we test methods on 

datasets sampled at different frequencies. 

 

Though computer simulation data has been widely used in statistics literature to test 

alternative methods, it is a relatively new practice in geography. In statistics, simulation 

data are mostly generated from predetermined distributions of parameters (e.g. uniform, 

normal, Weibull) but such distributions have limited application in geography. Instead, 

individual behaviors and interactions are key factors of many geographical processes, 

where agent-based simulation could generate data better reflecting geographical reality 

(Turner, Stephens and Anderson 1982, Grimm and Railsback 2005). In recent years, such 

data have been applied to assess metrics for animal movement analysis (Miller 2012) and 

models for landscape genetics (Epperson et al. 2010). If an inferential method could reveal 

the roles of spatial variables that are used in the agent-based simulation, it will increase 

our confidence that this inferential method could reveal the roles of real spatial variables.  

 

There is a risk that virtual land-change processes generated by one simulation program 

may lack generality, limiting the scope of conditions under which conclusions about the 

efficacy of statistical methods will apply. In this study, we replicated all our experiments 

using a completely different simulation program (see below). 
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The procedure of assessing inferential methods involved 4 steps (Figure 1). With a specific 

set of predictor variables and parameters, we (1) simulated a virtual land-change process, 

(2) sampled the data that resulted from that process spatially and temporally following 

specific rules, (3) exposed the sampled data to statistical methods of interest, and (4) 

evaluated those methods by comparing their coefficients to the actual parameters we 

programmed in the ABM. This evaluation procedure was repeated 1,000 times over 

different model variables and parameter values, both selected by the Monte Carlo 

technique. 
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Figure 1 

 

Case Study  

In this case study we compared two statistical methods: logistic regression and survival 

analysis. Logistic regression is a very popular statistical method for inferring predictor 

variables in land-change processes (Coomes, Grimard and Burt 2000, Cheng and Masser 

2003, Huang, Zhang and Wu 2009, López and Sierra 2010, Wyman and Stein 2010, Huang, 

Cai and Peng 2007) because it can associate binary land status, e.g. changed or not, to a 

suite of biophysical and/or socioeconomic variables. Despite many advantages, logistic 

regression suffers difficulties in modeling processes with multiple time measures. If both 

land types and independent variables change values over time, logistic regression has to 
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use either the value at one time or the average over time, which results in loss of 

information and reduction in degrees of freedom (An and Brown 2008). In contrast, 

survival analysis, as a method explicitly dealing with the occurrence and timing of events, 

shows promise in analyzing multi-temporal data. Theoretically, survival analysis should 

outperform logistic regression in analyzing multi-temporal data. However, survival 

analysis is relatively more complex than logistic regression, and has requirements on 

higher time resolution of data. As such, the relative performance of each statistical 

framework needs to be compared under different circumstances, as a way to improve their 

use in analyses of land-change processes. 

To compare their relative performances, we employed the SOME (Brown et al. 2005) land-

use change simulation (also replicated findings with IDEAL (Ligmann-Zielinska and Sun 

2010)) and tested these two methods for a wide range of conditions which were 

constructed as following: 

 

Step 1: SOME can include up to 4 predictors variables in simulation. We varied the number 

of variables included, in particular, time-dependent variables (i.e. variables change value 

over time) and/or time-independent variables, and tested if those variables can be 

effectively detected. 

 

Step 2: Two parameters out of a dozen from SOME, numresidents and numtests, are swept 

over their ranges. numresidents controls the amount of land change while numtests 

controls the level of determinism of land development. We acknowledge that in real world 

there may be more land-change possibilities that cannot be controlled by these two 

parameters. However we would like to choose them because 1) they determine the 

quantity and spatial distribution of land change, and 2) they affect the validity of some 

statistical assumptions when their values go to extremes. 

 

Step 3: We used the Monte Carlo technique to sample 1,000 specific land-change 

conditions from the full set of possible parameter combinations for simulations on our 

workstation (Dell Precision T5400 Intel Xeon 3.16GHz Qual-core 16G memory). 

 

Of the 1,000 Monte Carlo experiments, survival analysis achieved a success rate 60% 

higher than logistic regression (Figure 2, success rate is defined as the number of 

experiments over 1,000 that a statistical method correctly detects the variables based on 

statistical significance). This result confirms the theoretical speculation that survival 

analysis generally performs better than logistic regression. Moreover, while survival 

analysis and logistic regression performed equally well in detecting time-independent 

variables, survival analysis outperformed logistic regression in detecting time-dependent 

variables (Figure 3). This may arise from survival analysis’ more effective use of temporal 

information. However, survival analysis was more likely to detect the corresponding land-
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change variables at higher frequencies (Figure 4), whereas logistic regression was 

recommended when samples in time are sparse.  
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Conclusion 

The simulation approach is useful when assessing the inferential power of statistical 

models in land-change studies. One advantage that cannot be otherwise obtained is its 

endowment of a land-change researcher’s better control of experiment processes (thus less 

“noise” or unknown processes), allowing for potentially more accurate assessment of 

different statistical methods when applied in different land-change situations. Second, a 

rich and diverse set of land-change processes can be generated, as opposed to one or a few 

that might be contained in an empirical setting. In response to the risk that virtual 

processes do not reflect the wide range of possible underlying processes very well, we 

validated our findings using another simulation program, which was independently 
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developed based on different assumptions and conceptualizations, and the match of results 

corroborates our findings. 
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