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Abstract 

Automated analysis of large-scale high-resolution satellite imagery requires 

computationally efficient image representation techniques that characterize the visual 

content of a scene. The computational process involved in feature descriptor generation is 

often expensive and its scalability to large image databases forms an important research 

problem. This paper presents an overview of our work on exploiting the Graphics 

Processing Unit architecture for careful implementation of two different feature 

representation techniques – (i) Textons and (ii) Dense Scale Invariant Feature Transform. 

We evaluate the performance of our implementation for human settlement detection on 

an image database consisting of high-resolution aerial scenes representing diverse 

settlements. The rapid computation and robust detection accuracy of our experiments 

suggest that this High Performance Computing based framework has unique capabilities 

for Peta-scale production of high fidelity human settlement maps. 

 

Keywords: High Performance Computing, Settlement Mapping, High-Resolution 

Satellite Imagery. 

 

1. Introduction  

The profusion of high-resolution satellite imagery allows daily update of the Earth’s 

surface providing an overwhelming amount of data to monitor changes of land-cover and 

land-use. In order to extract relevant information it is critical to automate the analysis of 

this large-scale high-resolution satellite imagery using computationally efficient image 

representation techniques that characterize the visual content of a scene. The 

computational process involved in feature descriptor generation is often expensive and its 

scalability to large image databases forms an important research problem.  This paper 

presents an overview of our work on leveraging the Graphics Processing Unit (GPU) 

architecture for the implementation of two different feature representation techniques – 

(i) Textons and (ii) Dense Scale Invariant Feature Transform (DSIFT). We evaluate the 

performance of our implementation for human settlement detection on an image database 

consisting of high-resolution aerial scenes representing diverse settlements.  

2.  Feature Descriptors   

The general workflow of the settlement mapping process is provided in Figure 1. 

Interested readers are directed to refer Patlolla et al. (2012) for further details. As shown 

in the figure, generating robust feature descriptors is a key component of the framework. 
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In this work, we focus on two important texture-based feature representations, namely 

Textons and DSIFT. Textons are basic atomic elements of visual perception and are 

obtained by convolving images with a set of filter banks (Leung and Malik, 2001). 

DSIFT descriptors, on the other hand, are obtained by convolving images with a flat 2D 

gradient filter and measuring 8-directional histogram of the gradient orientation. Both are 

computationally expensive processes requiring an HPC based approach.  

 

 
Figure 1. Overview of the Settlement Mapping Process 

  

3. GPU Implementation 

3.1 Textons 

The most compute intensive part of the process involves the computation of filter-

responses by applying the 48 L-M filters on the imagery. Today, commodity-GPUs 

provide hundreds of cores offering ample opportunities to accelerate algorithms. This 

section briefs our approaches to filter-response computation and their performance. 

 

Figure 2. GPU implementation of Filter Convolution 

 

A naïve approach of the convolution process on a GPU is depicted in Figure 2. With 

the image raster on the global memory, the subset window around a pixel in shared 

memory, a block of the Compute Unified Device Architecture (CUDA) threads can 

process a block of the image with each thread computing the element-wise multiplication 

of its corresponding pixel and the surrounding pixels with the filter. This requires the 

boundary pixels for the pixels that are on the edge of the block. One can utilize extra 

threads/block, to load the boundary pixels, but these threads could otherwise be used for 
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achieving better parallelism. From the overall perspective, a naïve approach to 

convolution can only provide limited speedups. 

 

Separable Filters 

If a filter kernel can be separable, it can be decomposed as a product of two vectors 

(one column vector and one row vector) (Rigamonti, 2013). The implementation of 

convolution using separable filters on the GPU provides us good parallelism and is 

divided into two parts (Podlozhnyuk, 2007). The first consists of applying the row vector 

with the pixel block along with the boundary pixels on the left and right, and the second 

consists of the column vector with the pixel block and the boundary pixels at top and 

bottom as shown in Figure 3. The reduction in redundant accesses of image data by each 

thread combined with modifications to the thread block size and the pixels processed by 

each thread resulted in 40x speedup. 

 

 

Figure 3. GPU Implementation of Separable Filters 

 

Image Rotation  

If the filter at 0 degree orientation is linearly separable, then the filter-response of the 

same filter at other orientations (which are non-separable) can be computed by rotating 

the image to as depicted in Figure 4. This achieves a 20x speedup, but is still not an ideal 

option considering the number of memory accesses required to access the original and re-

oriented image in the memory during reorientation and convolution. 

Experiments were conducted assuming that all the filters are linearly separable. This 

delivered 40x speedup without affecting the final accuracy.  A final increase in speedup 

was achieved by utilizing CUDA Streams, which provide the opportunity to execute 

multiple CUDA operations simultaneously. Since, the computation of filter-response for 
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each of the filters is not interdependent, theoretically all the 48 filter-responses can be 

computed simultaneously, but are limited by CUDA resources (threads, shared memory 

etc.). We utilized CUDA Streams to compute filter-response kernels into different 

streams. This provided better speedups as shown in Table 1. 

 

CUDA Streams 1   2 3 4 

Speedup -    1.7x   2.1x   2.1x 

Time(ms) 280 165 130 130 

 

Table 1. Filter Response Times and Speedup with different CUDA Streams 

 

 

 

Figure 4. GPU Implementation of Image Rotation 

 

The computation of multiscale Texton features is implemented on GPU using similar 

techniques presented in Patlolla et al. (2012). 

3.2 DSIFT 

The variant of the well-known SIFT features (Lowe 2004), the DSIFT has been 

demonstrated by Fei-Fei and Perona (2005) to work well for scene classification. The 

DSIFT descriptor computation requires 4 different steps (Figure 5) that have been 

implemented using CUDA. First, the angle and norm of the gradient for each pixel is 

computed using one thread per pixel. During this computation step, an 8-value vector 

(one value per orientation) is computed for each pixel and separately stored in global 

memory in 8 matrices (one per orientation). Note that the shared memory is used to 

compute the intermediate results: x- and y-gradient values, angle, norm, and the index of 

the first orientation. In the second step, the 8 matrices are convoluted with a separable 

2D-filter, x- and y-basis are computed sequentially, similarly to the Textons computation. 

  

Separable Filter row and 
column kernel stored in GPU 
Constant Memory 

Image in GPU 
Global Memory 

Reoriented Image to different 
degrees in GPU Global Memory 

Compute the filter response 
in GPU Global Memory using 
a separable filter 

Reorient the image to 
get the responses of 
non-separable filters 

Non-separable filters 
which are at different 
orientations of a 
separable filter 

Separable filter 
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The third step applies a weight to each of the 4x4 cells. Sixteen threads per block are 

used, with one per weight coefficient. The last step mass normalizes the descriptor values 

using shared memory common to 128 threads (one per value) to perform the summation 

using the reduction algorithm. 

The cluster assignment is computed using shared memory and 64 threads for each 

descriptor. We selected 64 threads to balance active and idle status of the threads while 

computing the Euclidean distance (reduction algorithm). From this bag-of-words 

representation (Sivic 2003), feature vectors are created for each 16x16 pixel block. These 

feature vectors are the combination of 32-bin histograms for 5 scales.  
 

Figure 5: DSIFT Computation Steps 

 

4. Performance  

The performance speed and classification accuracy of our implementation was assessed 

on a benchmark dataset of 33 images of 0.5 m spatial resolution, each covering an area of 

2.6 km
2
, collected from various parts of Kandahar, Afghanistan. The average 

computational time for each component of the feature computation is provided in Table 

2.  For each image, a corresponding reference image is obtained manually. The dataset is 

split into two sets (set 1 and set 2) and a two-round cross-validation is performed. The 

average accuracy measures from the two rounds for each feature descriptor are presented 

in Table 3. 
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 Textons DSIFT 

Filter-Response (ms) 24.9 181.677 

Cluster-Assignment (ms) 387.26 489.73 

5 scale Feature-Computation (ms) 5.33  99.91 

Overall-process (ms) 510 1200.44 

 

Table 2: Breakdown of Computational Time 

 

 

Feature Overall 

Accuracy 

User’s  

Accuracy 

Producer’s 

Accuracy 

Textons 92.68±1.32 73.38±3.81 81.57±9.68 

DSIFT 90.88±1.96 68.41±1.81 78.61±0.24 

 

Table 3: Performance of the Textons and DSIFT features in settlement detection  

     

A typical settlement output from the designed framework is shown in Figure 6. A 

0.6m spatial resolution image covering an area of 74 km
2
 is processed in 85 seconds 

using Textons. The processing time includes input/output data transfer, image reading 

and writing. 

 

 
Figure 6. Settlement Detection using Texton Features.  

 

5. Conclusion 

With the rapid evolution of high-resolution remote sensing big data, there is a growing 

demand for high performance computing based approaches to various image processing 

tasks. In this research we have presented an overview of a GPU based implementation of 

two important texture features and demonstrated their usefulness in the context of large-

scale human settlement mapping. 
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