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Abstract

Many geophysical processes exhibit nonstationary features, and it is important to
estimate a non-constant variance function of such process so that an accurate pre-
diction interval be provided. We propose a di↵erence-based approach to estimating
the variance function from a single process where the errors are nonstationary and
correlated. We assume that the mean function is smooth and that the error process
is a product of a smooth standard deviation function and a second-order stationary
process. A numerical study shows that the mean squared error depends on the choice
of filter and the strength of correlation in the error process. Symmetric-weight filters
are preferred for errors with strong correlation, and Hall-Kay-Titterington weight fil-
ters are preferred for weakly correlated or independent data.
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1 Introduction

We develop a method to account for a variance function of a continuous nonstationary
process. For example, consider an average daily high temperature map of the U.S.
April. In general, it exhibits warm temperature in the south and cool temperature
in the north. There is a mesoscale temperature dip in the Great Lakes and the
Rockies where the temperature is cooler than the locations in the same latitudes and
in the east and west coasts the temperature is higher than the locations in the same
latitudes. These trends can be well accounted for by physics-driven models. However,
the observed average daily high temperature of April may consistently hit above or
below the projected average daily high temperature in patches (relatively small scale
to the entire U.S.). The size of the deviations would vary depending on the locations.
In order to account for the potential range, a prediction interval, of the average daily
highs in the coming April, we need to accurately estimate the variance function of
these random deviations.
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Estimating the variance by data di↵erencing is a method detailed by von Neu-
mann et al. (1941). When data have natural ordering, a gradual change in mean,
and independent and identically distributed errors, simple di↵erencing would e↵ace
the e↵ect of estimating a mean structure on the estimation of variance. That is,
random errors would directly contribute to the estimation of variance. This idea is
extended to estimating a variance function by Gasser & Müller (1984), Buckley et al.
(1988), and Hall & Carroll (1989). Simple di↵erencing between neighboring points in
sequential data have led to a nonparametric estimation of a one-dimensional variance
function. Hall et al. (1991) extended the idea to image processing. The data model
assumes independent and identically distributed errors added to a true image. The
variance is estimated as a linear combination of squared filtered data. The weights
are numerically optimized to achieve minimum variance of the variance estimation.
Di↵erencing may create bias due to non-constant mean function. However, as the
grid becomes finer and finer (in infill asymptotics), the bias becomes negligible. Our
method extends the variance function estimation to two-dimensional data, where a
di↵erencing idea is linked to a definition of variogram. Similarly, Zhu & Stein (2002)
have introduce generalized variogram and used di↵erence filters to estimate the fractal
dimension of fractional Brownian fields.

The paper is organized in the following order. In Section 2, we describe our data
model, define a linear filter, and introduce a filter variogram and local variogram. We
assume that the error process is isotropic when it is standardized. In Section 3, we
introduce a variance function estimator, and in Section 4, di↵erent filter shapes and
weights are explored. A di↵erence filter is used to remove a local mean structure and
to reduce a positive correlation structure in the errors. Via simulation, we compare
the e↵ect of applying symmetric weights to Hall-Kay-Titterington weights from Hall
et al. (1991). In Section 5, we summarize the results and conclude.

2 Data Model and Variance Function Estimator

2.1 Data Model

Consider a continuous process on a two-dimensional plane. Our data model assumes
that the process at location s is centered at smooth mean µ(s) and has an additive
non-constant error �(s)X(s) where X(s) is a stationary process mean 0, variance 1,
and cor (X(s), X(s0)) = cks� s0k↵ where 0 < ↵ < 2 for 0 < c < 1. The data model
of a random process {Z}s2R2 is

Z(s) = µ(s) + �(s)X(s). (1)

Suppose we have a set of observations on a regular lattice grid.
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2.2 Notations and Definitions

A linear filter function L is defined by a set of neighboring points J about p0, the
center of a configuration, such that

J =

(
p
j

= (p1j, p2j) 2 Z2 :
X

j

(p
j

� p0) = 0

)
. (2)

A set of non-zero weights A = {a
j

: j 2 J } is assigned to each point J . Then,

L (Z(s)) =
X

j2J

a

j

Z(s+ p
j

) (3)

represents a filter L applied to a process Z about s. Throughout this paper, we use
these shorthands: Z(s+p

j

) = Zs+j

, Z(s+hp
j

) = Zs+jh

, ⇢(ksi�sjk) = ⇢ki�jk, and
use j 2 J for p

j

2 J .

Definition 2.1 Define an L-filter variogram at scale h as

%

L

(h) = 1� 2
X
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k2J
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j
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j+k

⇢
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Filter weights A should satisfy these basic conditions:

1.
P

j2J a

j

= 0 which implies that E(
P

j2J a

j

X

i+j

) = 0.

2.
P

j2J a

2
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= 1 which implies that E

⇣P
j2J a

j

X

i+j

⌘2

= %

L

(h).

3.
P

j2J a

j

p
j

= (0, 0) which implies that L(Zs) gives a pseudo-residual
at s.

These are not su�cient conditions to determine the weights uniquely. The number
of conditions should match the number of nodes in each filter to determine a unique
set of weights. We impose a symmetry condition below:

4. The weights are symmetrically distributed about (0,0) or p0.

Definition 2.2 A filter is called a symmetric-weight filter when the set of weights on
each node of a filter satisfies Conditions 1 - 4.

Some filter configuration will not satisfy the fourth condition explicitly. In that case,
we rotate the filter and achieve the symmetric weighting. Instead of Condition 4,
we could choose weights such that the variance of the estimator is minimized. Hall
et al (1991) have developed an array of di↵erence filters to estimate the variance of
additive i.i.d. errors, and we call their proposed weight Hall-Kay-Titterington weight
(HKT). Symmetric-weight filters have the weight centered at the center of each filter
p0 , whereas the center of HKT weight is on one extremity of a filter configuration
as shown in Section 4.1 (marked with ‘⇥’).

Eunice Kim
34



Weight n ✓

Symmetric
40

✓ = 0.1 0.16 0.18 0.16 0.14 0.16 0.22
✓ = 0.01 0.89 0.91 0.87 0.86 0.88 0.96

100
✓ = 0.1 0.07 0.07 0.06 0.06 0.06 0.09
✓ = 0.01 0.56 0.59 0.53 0.51 0.54 0.68

HKT
40

✓ = 0.1 0.31
N/A

0.28 0.37 0.25 0.40
✓ = 0.01 0.96 0.96 0.99 0.94 0.97

100
✓ = 0.1 0.14

N/A
0.12 0.17 0.11 0.20

✓ = 0.01 0.75 0.73 0.85 0.67 0.82

Table 1: L-filter variogram values for di↵erent filter configurations, weighting options,
and the strengths of correlation, ✓, assuming an exponential correlation function for
the error process.

Definition 2.3 Define an L-filter local variogram for a two-dimensional nonstation-
ary process as the leading term of E [L(Z(s, h))2].

�⇤ (s;L(Z(s, h))) = �

2(s)(1�
X

j 6=k

j,k2JL

a

j

a

k

⇢

hkj�kk) = �

2(s)%
L

(h). (5)

The L-filter variogram describes the dispersion in correlated data as a function
of lag size. Table 1 focuses on displaying the dispersion measure by filter configura-
tion and weighting option. With symmetric weight filters L-filter variogram matches
closely with a regular variogram. With HKT weights, however, L-filter variogram
exaggerates the dispersion because the weight is heavily loaded on one node, and this
reduces the size of cross terms.

3 Variance Function Estimator

L-filter local variogram is, by definition 2.3, a variance function embedded in an
observed process scaled by a filter-specific variogram. We use this property to derive
an estimator for a variance function. First, we apply a linear filter L to a set of
observations that rise from smoothly varying mean and standard deviation functions.
The filtered observations serve as pseudo-residuals. Then, we take a local average of
the squared filtered process. This is a surface estimate of the L-filter local variogram,
�̂⇤ (s;L(Z(s, h))). When taking a local average, the boundary of ‘local’ and the form
of the smoothing kernel need to be determined. We defined a two-dimensional kernel
K⇤(·) as the Kronecker product of Gasser-Müller kernels (Gasser & Müller (1984))
where ⇤ represents a two-tuple bandwidth vector. We have L-filter local variogram
estimator at location s0 as
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�̂⇤ (s0; L(h)) =
X

i2R

K⇤(i,0)L(Z(si, h))
2
. (6)

To estimate %̂

L

(h; ✓̂), it seems that we need an insight on the correlation function
%(·) of the process. From our one-dimensional study, however, we see that the full
description of the correlation function is not needed because the lag size h is fixed
when filtering the data. While h is relatively small, we assume a simple parametric
form of the correlation structure, estimate the correlation function parameters ✓̂, and
then estimate the variance at location s0 as

�̂⇤(s0) =
�̂⇤(s0;L(h))

%

L

(h; ✓̂).
(7)

4 Exploring Filter Options

We are interested in identifying a set filter configurations and weighting options that
would provide a statistically consistent and e�cient estimation of variance function.
The bias and variance of the variance estimator in equation (7) can be examined by
long and complex analytical derivations for the several filters we chose to investigate,
but instead we performed a simulation study to understand the statistical performance
of the proposed estimator of variance.

4.1 Configuration and Weights

We have proposed to use a di↵erence filter to recast the data as a filtered error process
since it leads to less bias in the estimation of a continuous and smooth variance
function given that the mean function changes slowly (the degree di↵erentiability is
small) in comparison to the variance function. The shape of the filter we consider is
all in the span of a 3⇥3 grid and is symmetric about an axis that goes through the
areal center of the filter.

Here is a 2⇥2 square filter, which I name Square2, with symmetric weight on the
left and HKT weight on the right:

symmetric: ⇥
a = ±1

2

-a a

a -a
HKT:

-3a a

a a
⇥

a = ± 1p
12

I call a 3⇥3 square filter, which incorporates eight nodes about p0 and excluding the
weight center, Square3. I do not present the exact picture here to reserve space. Refer
to the Appendix of Kim (2013). Next is a + -shape filter, with symmetric weight on
the left and HKT weight on the right:
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symmetric: a = ± 1p
20

HKT:

a

a -4a a

a

0.231

0.263 0.167 -0.892

0.231

⇥

Lastly, a Y-shaped filter is presented only with a symmetric weight.

Symmetric:

a

a -3a

a

a = ± 1p
12

4.2 Simulation Set-up

We simulated n = 100 zero-mean, stationary Gaussian processes with varying levels
of dependent structure on a unit square. Each innovation was read from both N =
40⇥40 and 100⇥100 equally-spaced grid points. We used an exponential correlation
function at two levels of range parameter ✓ = 0.01 (weak correlation) and ✓ = 0.1
(strong correlation) to simulate innovations, and we also generated innovations with
independent errors. We, then, scaled the stationary innovations by the standard
deviation functions shown in figure 1.
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Figure 1: Standard deviation functions �(s
x

, s

y

) in 3-dimensional perspective draw-
ing.

Since the variance is in quadratic units of the actual observations, overestimation
is easily pronounced. So, we scale the estimate by the true value:

✏̂⇤(s) =
�̂

2
⇤(s)� �

2(s)

�

2(s)
, (8)

and use it in the measures of discretely-integrated mean-squared-error (DMSE),
median-absolute-deviation (MAD), and maximum deviation (rMAX) defined with
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the relative size of the error:

rDMSE⇤(L⌫

) =
1

N

l

X
✏̂⇤(si)

2 (9)

rMAD⇤(L⌫

) =
1

N

l

X
|✏̂⇤(si)�median

i

✏̂⇤(si)| (10)

rMAX⇤(L⌫

) = max |✏̂⇤(si)| . (11)

4.3 Results

For the following generalization of the study results, assume that the mean function
µ(s) varies more slowly, or has a lower order di↵erentiability, than the standard
deviation function �(s). There are three takeaways from the simulation study.

First, the filter weighting option should be chosen depending on the correlation
structure of the data. When the errors are independent or when the correlation
is weak, HKT weights by construction are the most e�cient estimator of variance
function across all filter configurations. When the errors are moderately correlated,
symmetric weights should be used because the estimator portions the correlation
more accurately. In figure 3, the plots on the left have independent error scenario
and display lower rDMSE by HKT (in blue) than symmetric weights (in white) for
all five filter configurations. The plots on the right reverses this description as the
correlation is quite strong with ✓ = 0.1. The boxplots in the middle column seem to
tell a conflicting story, but upon close examination the reason HKT works well on
the top is the correlation is not detected on a coarse 1

40
⇥ 1

40
scale versus on a fine

1
100

⇥ 1
100

scale grid over a fixed region.
Secondly, when there is a dominant direction in the filter configuration, such as a

line or a Y-shape filter, it is important to achieve a symmetric weighting about the
major and minor axes of the filter. Depending on the type of grid and the shape of the
filter, it would take four or six directional rotations to filter an observed process. The
steps of the directional-averaging should be, first, filtering the process in all directions,
and then, taking the average of a set of four or six filtered processes, and lastly, using
it as the filtered process, L(Z). The averaging across four or six directions of a
filter in a span of 3⇥3 is, in fact, providing multiple symmetric weighting options.
Depending on the ways the weight is distributed on each node, we could increase
the statistical e�ciency of the variance estiatmion. Table 2 provides a five-number-
summary of rMAD where the simulated processes are on a 100 ⇥ 100 grid. By
directional-averaging, as shown in the right-most column, the relative median absolute
deviation decreases significantly. Comparing five filter configurations by rDMSE in
figure 2, we see that the directionally-averaged line filter (8-point star) performs the
best among all, and then, follows the + with the scale of 1 and

p
2, Square2, and

Square3 filters.
Lastly, it is important to have the configuration of a filter be compact and en-

compassing of all directions to capture local characteristics. As noted by directional-
averaging, filtered data should take information from all directions assuming isotropy
of the errors. From table 2, we see that a single Y filter performs, on average, better
than a single line filter since a Y configuration extends out more than a line. We also
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Figure 2: rDMSE of five filters with HKT weight (in light blue) and symmetric
weight (in white). The filter configurations are 8-point star, +, ⇥, Square2, and
Square3. The top row used data on a coarse grid of N = 40⇥ 40, and the bottom on
a fine grid of N = 100⇥ 100.

Eunice Kim
39



investigated the e↵ect of scale h on the estimation but did not include another table
here for brevity. To summarize, when the errors are independent, either a scale of
h = 1 or 2 results in a similar estimation; but when the errors are strongly correlated,
the smaller scale of h = 1 results in smaller rMAD and rDMSE than h = 2. In
other words, a filtered process is better de-correlated when the applied filter uses the
smallest possible span rather than a larger span.

rMAD (%)

Shape ✓ Min. Q1 Median Q3 Max. Mean (Stdev.) Dir. Avg.

0 5.10 7.10 8.20 9.20 12.20 8.20 (1.40) 6.52 (1.02)
0.01 5.00 7.10 7.80 8.60 11.80 7.80 (1.20) 6.13 (0.87)
0.1 5.70 7.20 7.90 8.60 12.10 8.00 (1.20) 6.11 (1.10)

0 4.80 6.10 7.00 7.80 9.30 6.90 (1.10) 6.69 (1.08)
0.01 3.80 6.10 6.60 7.20 9.50 6.70 (1.00) 6.26 (0.95)
0.1 4.50 5.80 6.60 7.30 10.10 6.60 (1.20) 6.17 (1.06)

Table 2: rMAD comparison between line versus Y-shape filters, and with and with-
out directional rotation and averaging.

5 Discussion

We frequently encounter nonstationary processes in our geography, and those pro-
cesses not only contain varying levels of mean but also a varying size of scale by
location. In this paper, we proposed a nonparametric method for a variance func-
tion estimation using a single observed process. First, a di↵erence filter is applied
to regularly dispersed data over the area of interest; then we take a local average of
the squared filtered data and scale it down by an L-filter local variogram. We have
not discussed the practical issues of bandwidth selection. The size of a bandwidth
controls the range of averaging and a↵ects the quality of estimation greatly. We rec-
ommend taking the cross-sections of the data in x� and y� directions and to perform
separate bandwidth selections as discussed in Chapter 3 of Kim (2013).

We have assumed that the data is recorded on a grid. In practice, many geo-
referenced data are not observable on an exact grid. Still, we have applied a di↵erence
filter to a map of annual precipitation of the Midwest. As long as the observations
are distributed uniformly across the region, the filter configuration can adapt to the
locations of data collection. We have explored di↵erent filter configurations and two
weighting schemes. Based on the simulation study, we recommend using a compact
and directionally extended configuration and placing symmetric weights on the nodes
of a filter. When the data contain weak correlation in the error, the HKT weight
filter estimates the variance function with small DMSE. For many nonstationary
processes, it is di�cult to include local features in the mean function, therefore, a
symmetric weight filter should help consistently estimate a variance function. Also,
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we advise employing directional-averaging if there is a dominant direction in a filter
configuration, so that the local feature is well accounted for in all directions.
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