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Abstract 

In geosimulation models it is often, implicitly or explicitly, assumed that the relationship 

between the system state change and its explanatory processes, i.e. model structure, is 

stationary. Potential systemic changes influencing the stationarity of this relationship are 

thereby disregarded. We present a framework to assess model structure stationarity and 

apply it on a case study in which we model land use change in São Paulo state, Brazil, 

from 2004 to 2012. We find that systemic changes do occur during this period, which is a 

warning that the assumption of stationarity is likely to cause an underestimation of 

simulated future uncertainty. 

 

1. Introduction  

Building a geosimulation or spatio-temporal model involves 1) creating a model 

structure, i.e. identifying the relevant processes in the system plus the way they interact 

and implementing these as transition rules in the model, and 2) parameterizing the model, 

i.e. setting the model parameters so that the processes are correctly represented for a 

given case study. Ideally, a geosimulation model is fully stochastic, so that uncertainty in 

the simulated system state change can be quantified (Heuvelink, 1998). Building a fully 

stochastic model requires having a preselection of potential model structures instead of a 

single best-guess model structure, as well as a prior probability distribution for each 

parameter instead of a single value. By assimilating a dataset of observations of the 

modelled system the likelihood of each model structure being correct can be assessed and 

the posterior probability distribution for each parameter can be determined (e.g., 

Verstegen et al., 2014). 

Once such a stochastic model has been set up, modelers often assume that the 

established relationship between the system state change and its explanatory processes is 

stationary. Accordingly, model structure and parameterization are usually kept constant 

over model runtime, disregarding potential systemic changes in this relationship resulting 

from e.g., climate change or societal transformations. If systemic changes are found to 

have occurred in the past, simulated future uncertainty is probably underestimated 

(Verstegen et al., in press). 

Here, we present a framework that can 1) estimate posterior probabilities of model 

structures and parameters, given a range of potential model structures, prior probability 

distributions of all stochastic parameters and a dataset of observed system state changes 

over time, and 2) assess the stationarity of this system. We test the framework by 



43 

 

modeling land use change in São Paulo state, Brazil, using a Cellular Automata (CA) 

type of model.  

2. General framework  

For a general geosimulation model, potential model structures and prior probability 

distributions for each parameter can be estimated by expert judgment or literature review. 

Computationally, the stochastic structure and parameters can be represented by running a 

Monte Carlo simulation, where each ensemble member i, with i = 1, 2, …, I, is created by 

obtaining a sample from the potential structures and each of these probability 

distributions. In this way a stochastic model is obtained in which the defined errors 

propagate to the modelled system state. 

 We use a Bayesian estimation technique, the particle filter (van Leeuwen, 2009), to 

reduce the uncertainty in the ensemble based on observations of the real system state. At 

a time step when observations are available, the particle filter is applied: 
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In equation 1, 𝑝(𝐳𝑡
𝑖) is the prior probability of the model state of ensemble member i. 

The model state consists of the system state(s) as well as the transition rules, inputs and 

parameters. Furthermore, 𝑝(𝐨𝑡) is the probability distribution of the observations, i.e. the 

measurement data and their uncertainty, and 𝑝(𝐳𝑡
𝑖|𝐨𝑡) is the posterior probability of the 

model state 𝐳𝑡
𝑖  of i, given these observations. Finally, 𝑝(𝐨𝑡|𝐳𝑡

𝑖) is the probability of the 

observations given member i; 𝑝(𝐨𝑡|𝐳𝑡
𝑖) can be determined by a function of the difference 

between the modelled system state and the observed system state of i. This is further 

explained in Verstegen et al. (2014, in press).  

Equation 1 can be evaluated in two ways: at each time step t when observations are 

available 𝑝(𝐳𝑡
𝑖)  can be either 1) the chosen prior probability distribution, or 2) the 

posterior probability distribution from the previous moment that observations were 

available, i.e. the particle filter is applied sequentially. In method 1, distinctive 

information about 𝑝(𝐳𝑡
𝑖|𝐨𝑡) at that point in time is obtained, while in method 2, additive 

information is obtained. Method 2 is the traditional approach of the particle filter, in 

which the probability distributions of model structure and parameters gradually converge 

to their best value. Yet, this approach should only be applied when it can be assumed that 

model structure and parameters are stationary, because if they are not, there is no single 

model structure or single parameter the model state can converge towards.  

Therefore, we apply the particle filter in both ways, method 2, hereafter called 

'traditional approach', to estimate the best-guess posterior probabilities of model 

structures and parameters over all observation moments, and method 1, hereafter called 

'systemic change test', to assess to what extent the posterior probability distributions 

found at the different observation moments vary over time. Using statistical tests, we 

check if potential variations in the distributions are significant and if their means show a 

temporal pattern (see Verstegen et al., in press).  
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3. Case study  

A land use change Cellular Automaton is set up to test our framework. The model 

simulates the expansion of sugar cane in São Paulo state, Brazil, on a 5 km resolution 

raster. Four processes that might be of relevance in where sugar cane expands are 

implemented: number of sugar cane cells in an extended Moore neighborhood, distance 

to sugar cane mills, potential yield of the land, and slope. Weights between zero and one 

are assigned to these processes, determining their relative importance in the total 

transition rule. These weights have an a priori uninformed distribution, and are a 

posteriori determined by the particle filter, using observations from Rudorff et al. (2010) 

from 2004 to 2012. 

4. Results  

Using the traditional particle filter method we find that the mean weights of the processes 

determining where sugar cane expands are 0.23 for sugar cane in the neighborhood, 0.36 

for distance to mills, 0.13 for potential yield, and 0.28 for slope (Figure 1). The posterior 

distribution in the traditional approach of the weight for sugar cane in the neighborhood 

clearly shows two peaks, suggesting that there is no single model structure the model 

state can converge towards. 

 
Figure 1: Prior (left) and posterior distributions of the weights of sugar cane in the 

neighborhood, distance to mills, potential yield, and slope, obtained with the 'traditional 

approach' (right) and with the 'systemic change test' (middle). The values inside the bar 

plots indicate the probability that the null hypothesis of stationarity is unjustly rejected 

for that year. The value on the right gives the probability that the pattern found in the 

deviations from the mean is random. Hence, for both tests: low values indicate a high 
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probability of systemic change and high values indicate a high probability of stationarity. 

Adapted from Verstegen et al. (in press). 

 

The systemic change test confirms this suggestion (Figure 1): the posterior 

distributions of sugar cane in the neighborhood in especially 2007 and 2008 are 

significantly different from the rest. The probability that the null hypothesis of 

stationarity is unjustly rejected for these years is low, 0.07 and 0.11, indicating that the 

change is significant (cf., Verstegen et al., in press). Also, the probability that the 

temporal variation in the mean is random is low, 0.05, signifying systemic change with a 

temporal pattern. For the weights of potential yield and slope the same reasoning is true, 

but with lower significance levels. The weight of distance to mills seems to be stationary, 

but still the overall model structure (combination of all process) is not. 

5. Discussion and conclusions 

We have presented a framework that can 1) estimate posterior probabilities of model 

structures and parameters of a geosimulation model based on observed system state 

changes over time, and 2) assess the stationarity of this system. The advantages and 

drawbacks of the framework are discussed in Verstegen et al. (2014, in press). In our case 

study the assessed model structure was found to be non-stationary; a warning for the 

modeler to be careful drawing conclusions from simulated projections or even not to use 

the model for future projections. 
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