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Abstract 

Due to the inherent variance heterogeneity in clustered preferential sampling the 

underlying variogram cannot be estimated directly. A variance-stabilizing declustering 

method is proposed here using a modified Box-Cox transformation. In contrast to the 

traditional Box-Cox transformation that aims at achieving normally distributed data, its 

modified version has the objective to match the variance in the clustered sample 

observations to the variance of the remaining more disperse background sample 

observations. The proposed approach leads to less biased predictions with lower standard 

errors than alternative proposed methods. 
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1. Introduction 

Geostatistical techniques, especially Kriging, are widely used to predict natural features 

with a continuous spatial distribution. The performance of Kriging critically relies on [a] 

the variogram estimation, which is supposed to capture the spatial autocorrelation 

structure within the unknown population values (Richmond 2002; Kovitz and Christakos 

2004), and [b] the spatial structure of the sample locations among which Kriging 

interpolation is performed. The sampling locations for the variogram estimation and those 

for the subsequent surface prediction do not necessarily need to be identical. The most 

efficient sampling procedure for the variogram estimation requires capturing reliably the 

semi-variogram at all relevant inter-sample distances, whereas for the purpose of 

prediction evenly distributed sample locations across the entire study area are preferred. 

However, for both the variogram estimation and the prediction, clustered preferential 

sampling may occur due to external factors such as financial limitations and hostile 

environmental factors (Olea 2007; Menezes et al. 2008). Sample observations coming 

from a heterogeneous population, like in clustered preferential sampling, lead to 

compromised variogram estimates. Usually the variability within a cluster will be 

substantially larger at short distances than that for the remainder of the sample points in 

the less variable study area. In particular at short distances, this local variance 

heterogeneity can lead to unrepresentative joint variogram estimation. In clustered 

preferential sampling the status whether a sample observation belongs to a cluster or the 
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remainder of the study area is well identified, however, when predicting data values in-

between the sample locations this status is generally unknown. 

To avoid the problem caused by clustered preferential sampling, a number of 

declustering methods have been proposed to improve variogram estimation. There are 

two major branches to control the induced bias in the variogram estimation: the 

calibration of weighted variograms (Bourgault 1997; Richmond 2002; Kovitz and 

Christakos 2004; Menezes et al. 2008) and the sub-sampling approach (Olea 2007). Most 

researchers adopt the weighted variogram approach, such as using the ratio of correlation 

matrices determinants (Bourgault 1997), two-point declustering method based on cells or 

clusters (Richmond 2002), declustering weights based on zones of proximity (Kovitzand 

and Christakos 2004), or the robust kernel variogram estimator (Menezes et al. 2008). 

The two-point declustering method (Richmond 2002) will be conducted for comparison 

purposes to evaluate the performance of the proposed method. Regarding grids or clusters 

as units, Richmond’s method (2002) counts the number of point pairs (𝒏) for a certain 

distance (𝒅) between two grids (𝒈𝒊 and 𝒈𝒊′) or two clusters (𝒄𝒊 and 𝒄𝒊′). Then assign the 

inverse proportion of the total pair number 𝒘𝜶𝜶′ = 1/𝒏 as the weights to those specified 

pairs to adjust variogram. Moreover, the sub-sampling approach (Olea 2007), which is to 

pick up sub-samples free of clusters to build a representative histogram, will be used for 

evaluation as well. Samples are divided into two subsets: subset 1 (free of clusters) and 

subset 2 (only including clusters). Based on the maximum nearest neighborhood distance 

between the two subsets, some points are moved from subset 2 to subset 1 iteratively. 

The distance distribution of the expanded subset 1 should match that of the original 

subset 1. Then the expanded subset 1 can be used to model variogram for prediction 

purposes.  

The proposed method in this paper adopts the Box-Cox transformation to improve the 

variogram estimation for a heterogeneous surface when clustered preferential sampling 

usually is applied. Instead of the traditional Box-Cox transformation, which treats the 

sample as coming from a homogeneous population and which aims at achieving a 

symmetric or Gaussian distribution of the transformed sample observations, the objective 

of the proposed method is to stabilize the variance within the clustered sample points and 

those associated with the remainder of the study area.  

2. Methodology 

2.1 Data 

Clustered data from the GSLIB (Deutsch and Journel 1997) have been used in the two-

point declustering method (Richmond 2002) and Olea’s sub-sampling approach (2007). 

There were in total 140 sample observations (Figure 1b) selected from a 50×50 regular 

grid image (Figure 1a), including 86 single points (subsample 1) in the disperse study 

area and 10 clusters (subsample 2). Most clusters consist of 5 sample points with distance 

of 1 around a central sample point with the exception one 9-point cluster, which is a 

combination of two 5-point clusters with one edge point being cut-off (Olea 2007). 

Figure 1c displays the 3D map of the reference population data with sharp high peaks 

representing clusters of large values. Figure 1d displays the abnormal variogram cloud of 

sample point pairs in 3 dimensions: the spatial distance between two sample points 

( 𝑧𝑖  and 𝑧𝑗 ), the average attribute value  (𝑧𝑖 + 𝑧𝑗)/2  identifying the different baseline 
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levels in the cluster and the surrounding background data values, and the absolute 

difference between two sample points |𝑧𝑖 − 𝑧𝑗| measuring their dissimilarity. There are 

three groups of point pairs identified in the variogram cloud: [a] the relationship between 

clustered-surrounding sample point pairs in green, [b] clustered-clustered point pairs in 

red, and [c] surrounding-surrounding point pairs in black. Due to the larger variance in 

the clustered-surrounding group and clustered-clustered group, the variogram cloud does 

not display the usually increasing attribute dissimilarity trend with increasing inter-point 

distance. Compared to the variogram of the full referenced population (Figure 1e), the 

calibrated variogram of the clustered sample (Figure 1f) displays an irregular pattern with 

the high dissimilarities at the small distance intervals. 

 

 

(a) Distribution of reference population (b) Distribution of sample locations with clusters 

  
(c) 3D surface of the reference population (d) Exploratory heterogeneity 3D plot of sample 

point dissimilarities 
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(e) Variogram of reference population 
 

(f) Variogram of sampling locations with clusters 

  
Figure 1 Exploratory data analysis including variogram estimation of the untransformed 

data.  

 

2.2 Box-Cox transformation and Kriging prediction 

The observed sample values range from 0.06 to 58.32. However, nearly half of the 

observations are smaller than 1, which implies two underlying different distributions are 

contributing to this heterogeneous surface. Most of single points are from the sub-

population with small mean and small variance, whereas the clusters are from the sub-

population with large mean and large variance (Figure 2a). Therefore, the dissimilarities 

captured at short distances cannot reflect the true differences of the entire study area.  To 

address this problem, we can conduct a Box-Cox transformation (Equation 1) with the 

objective of making the variances of both sub-populations as similar as possible (Figure 

2b).  

 
(a) Density curves before transformation (b) Density curves after transformation 

  
Figure 2 Distributions of two populations 
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The equation of Box-Cox transformation is:  

𝑦𝑖
(𝜆)

= {
(𝑦𝑖

𝜆 − 1)/𝜆 𝜆 ≠ 0

ln𝑦𝑖              𝜆 = 0
                                                              (1) 

where 𝑦𝑖 denotes the sample data 𝑖 on the original scale which needs to be transformed 

and 𝜆 is the optimal transformed power. Note that we were not seeking a transformation 

parameter 𝜆 here to make the joint distribution symmetric but the optimal 𝜆-value was identified 

iteratively so that both sub-samples exhibit comparable variances. In this case the optimal 

transformation parameter is 𝜆 = 0.19 (see Figure 2b). We regard sub-samples 1 and 2 to 

be representative for the underlying heterogeneous population. After the optimal 𝜆 has 

been identified, we calibrate the variogram model parameters on the transformed scale 

and conduct ordinary kriging to predict the interpolated values for the whole study area. 

In addition to these predicted values on the transformed scale, also prediction standard 

errors and the 95% confidence interval bounds (𝐶𝐼0.025 and 𝐶𝐼0.975) are calculated for 

each prediction location.  

The back-transformation (see Equations 2 and 3) into the original data scale yields the 

expected predicted values 𝐸(𝑌), confidence interval bounds 𝐸(𝐶𝐼0.025) and 𝐸(𝐶𝐼0.975) as 

well as prediction standard errors √𝑉𝑎𝑟(𝑌) . In Equations 2 and 3 𝜇𝜆 is the predicted 

value in the transformed scale and 𝜎(𝜆)
2  is the local prediction variance at each predicted 

location (Tiefelsdorf 2013).  

𝐸(𝑌) ≈ (𝜆 ∙ 𝜇𝜆 + 1)1/𝜆 ∙ (1 +
1

2
∙ 𝜎(𝜆)

2 ∙
(1−𝜆)

(𝜆∙𝜇(𝜆)+1)
2)                                          (2) 

𝑉𝑎𝑟(𝑌) ≈ 𝜎(𝜆)
2 ∙ (𝜆 ∙ 𝜇(𝜆) + 1)

2

𝜆
−2

                                                          (3) 

Note that both expressions are derived from a truncated Taylor-series expansion. In 

particular the variance expression may exert a noticeable truncation error (Tiefelsdorf 

2013). Therefore, the back-transformed confidence interval is also reported. In order to 

remain consistent with the geo-statistical practice and software implementations, the 

expectation rather than the median were used.  

The variogram modeling parameters (Richmond 2002; Olea 2007) of three earlier 

methods and those of the proposed variance-stabilizing approach are displayed in Table 1. 

Note that (Richmond 2002; Olea 2007) by default applied a log-transformation on the 

original data, which is equivalent to choosing 𝜆 = 0, before calibrating their variograms. 

In contrast, the optimal variance stabilizing transformation parameter for these sample 

observation is 𝜆 = 0.19. 

 

 

 Model type Nugget Partial Sill Range 

Cell (Richmond 2002) Spherical 0.10 1.90 9.75 

Cluster (Richmond 2002) Spherical 0.10 1.90 10.25 

Sub-sampling (Olea 2007) Spherical 0.06 1.77 9.52 

Variance-stabilization Spherical 0.56 2.07 11.41 

 

Table 1: Variogram parameter estimates of the different declustering methods 
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3. Preliminary results 

The distributional characteristics of the predicted values in the original measurement 

scale of the four declustering methods are different from the true characteristics of the 

underlying reference population data (Table 2). The means and medians of the predicted 

back-transformed values for all four methods are biased but the mean and skewness of 

the proposed variance-stabilizing method are closer to those of the reference population.  

 

 Mean 1
st
 

Quartile 

Median 3
rd

 

Quartile 

Standard 

Deviation 

Skewness 

Reference population 2.58 0.34 0.96 2.56 5.15 6.83 

Cell (Richmond 2002) 2.43 0.89 1.70 3.12 2.65 5.85 

Cluster (Richmond 2002) 2.40 0.86 1.65 3.07 2.66 5.80 

Sub-sampling (Olea 2007) 2.33 0.84 1.63 2.97 2.60 6.16 

Variance-stabilization  2.42 1.11 1.80 2.89 2.45 6.99 

 

Table 2: Comparison of distributional characteristics for the four declustering methods 

against those of the true reference distribution 

 

After the back-transformation of the predicted interpolation values into the original 

measurement scale the aggregated width of the confidence intervals  ∑(𝐶𝐼0.975 − 𝐶𝐼0.025), 

root mean square errors (RMSE) and sum of prediction standard errors are calculated as 

the evaluation criterion. Although the predictions based on the proposed variance 

stabilizing transformation have the largest RMSE, the aggregated widths of the 

confidence intervals and the sum of local predication standard errors are much lower than 

those of the other three methods (Table 3).  

 

 

 RMSE ∑(𝑄95% − 𝑄5%) 
Sum of uncertainty 

Cell (Richmond 2002) 3.98 36936.81 37762.89 

Cluster (Richmond 2002) 3.98 34962.81 35410.85 

Sub-sampling (Olea 2007) 4.00 31798.75 29281.93 

Variance-stabilization  4.16 26602.85 9504.08 

 

Table 3: Comparison of predicted accuracy and uncertainty of four declustering methods 

 

Figure 3 shows the prediction standard errors of the four declustering methods. Figure 

3d displays that the proposed variance-stabilizing approach also decreases the prediction 

uncertainty in non-clustered sub-regions. In other words, the method proposed in this 

paper achieves the highest prediction certainty which improves the prediction accuracy. 
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(a) Prediction standard errors of two-

point cell declustering method 

(b) Prediction standard errors of two-point 

cluster declustering method 

  
(c) Prediction standard errors of sub-

sampling declustering method 

(d) Prediction standard errors of the 

proposed variance-stabilizing approach 

   
Figure 3: Predicted uncertainty of four declustering methods 

4. Conclusions 

Highly heterogeneous spatial surfaces are not only observed in the natural sciences, they 

emerge also in other disciplines. For instance, the population density will be mainly flat 

in rural regions and then will peak sharply once one enters urbanized areas; alternatively, 

air pollution measurement stations will focus on areas with a high emission potential. 

Methods to representatively sample these heterogeneous surfaces and subsequently to 

perform accurate interpolations are highly relevant. The proposed variance stabilizing 

transformation is one approach to handle these diverse scenarios, which at least as long as 

one evaluates dissimilarities within each sub-sample are resistant to the detrimental 

effects of incongruity. However, the authors feel that so far none of the proposed methods 

have satisfactorily addressed this interpolation challenge without additional exogenous 

information to capture the dichotomy of clusters and their surrounding background 

surface. In order to gain insights into how to handle and model these kind interpolation 

scenarios most appropriately, well-designed simulation studies are a required starting 

point. 
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