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Abstract 

Respondent driven sampling (RDS) is a type of sampling method used to survey rare and 

hard to reach populations. RDS was developed to address the issue of bias associated 

with snowball sampling in qualitative research.Although, RDS has evolved by addressing 

major issues involved with the snowball sampling method, the issue of how the presence 

of spatial autocorrelation (SA) affects RDS had not been studied. SA refers to the 

clustering of similar attribute values in geographic space. Quantitative studies show that 

the presence of positive SA leads to an underestimation of the appropriate sample size. If 

RDS is not affected by SA, then the samples are expected to be dispersed in geographic 

space and not clustered around a sampling seed that initiates a sequence of respondents. 

This paper presents impacts of SA on RDS when a social network displays a geographic 

pattern. The geographic distribution of the samples and associated socio-economic and 

demographic variables are analyzed with respect to sequences of respondents. Social 

network RDS data for Rio de Janiero, Brazil are analyzed. Preliminary results indicate 

that in these social network RDS data, samples are clustered around their initial seeds and 

do not spread out in geographic space as the sequence of respondents progresses. The 

result is increased sampling variance, which raises a concern about appropriate sample 

size determination in RDS. 

 

Keywords: respondent driven sampling, snowball sampling, spatial autocorrelation, 

social network. 

 

1. Introduction  

Snowball sampling, introduced by Goodman in 1961, is a survey strategy initialized by 

selecting a group of participants known as seeds. Once surveyed, each seed recommends 

potential respondents (nodes) with shared connections (edges) on the basis of a research 

topic and whom each referrer believes likely to also participate. This process proceeds in 

a similar fashion over a series of waves, and the nodes and edges define a social network. 

Respondent driven sampling (RDS), developed by Heckathorn in 1997, is a formalized 

method, based on the snowball strategy, that compensates for the non-random process of 

data collection. Previous studies have concluded that little bias exists among RDS results 

compared to simple random sampling (SRS). However, subsequent research has indicated 

the presence of a variance inflation factor (VIF) and increased design effect among 

underlying attributes of the members of the RDS networks versus SRS. The result of this 

effect is the tendency to underestimate the appropriate sample size among RDS surveys. 

A prominent contributor to the VIF may be positive spatial autocorrelation (SA) 
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attributed to the geographic configuration of the population being. If a social network 

displays a geographic pattern, the variance for a RDS is likely to be impacted by SA 

sampled (Rudolph et al., 2015). To analyze this impact, a simulation can be designed 

based upon real world data from a RDS survey conducted with heavy drug users in Rio 

de Janiero, Brazil. This simulation proceeds through the obtained social network based 

upon empirical probabilities determining the number of nodes for each subsequent wave. 

The purpose of this paper is to establish a basis for designing this type of simulation 

experiment, and demonstrate that the VIF attributable to SA is an outcome. 

2. Data  

2.1 Network 

The network analyzed in this research is from an RDS study conducted in Rio de Janiero 

in 2009. The network consists of 611 heavy drug users defined as having injected illegal 

narcotics in the last 6 months and/or using illicit drugs, other than marijuana or hashish, 

at least 25 days in the last 6 months. Respondents are over the age of 18 and meet the 

protocol of the study. The original study utilizes RDS as a technique for surveying hard 

to reach populations, specifically, HIV transmission associated with heavy drug users 

(Toledo, et. al. 2009). Network data are configured in two tables. First, the node data 

consist of anonymous respondent identification numbers (ID) and their corresponding 

administrative regions (AR) of residence (Table 1); 140 of the respondents’ locations are 

unknown.  

 

ANCHIETA 10 MADUREIRA 91 

BANGU 2 MEIER 3 

BARRA DA TUUCA 1 PAQUETA 0 

BOTAFOGO 4 PAVUNA 2 

CAMPO GRANDE 2 PENHA 1 

CENTRO 30 PORTUARIA 35 

CIDADE DE DEUS 0 RAMOS 5 

COMPLEXO DA MARE 0 REALENGO 4 

COMPLEXO DO ALEMAO 0 RIO COMPRIDO 8 

COPACABANA 0 ROCINHA 0 

GUARATIBA 1 SANTA CRUZ 4 

ILHA DO GOVERNADOR 67 SANTA TERESA 4 

INHAUMA 2 SAO CRISTOVAO 153 

IRAJA 0 TIJUCA 29 

JACAREPAGUA 1 VIGARIO GERAL 0 

JACAREZINHO 1 VILA ISABEL 9 

LAGOA 2 UNKNOWN 140 

TOTAL 611 

Table 1. RDS respondent count per region of Rio de Janerio 
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2.3 Demographics 

The study area consists of 33 ARs. Demographic data were obtained from the Instituto 

Brasileiro de Geografia e Estatística (IBGE) from the 2010 census online at 

http://www.ibge.gov.br/home. Four attribute variables were selected assuming that they 

demonstrate correlation with heavy drug use, and reflect at least a moderate degree of SA 

indicative of the geographic configuration. The demographic variables are: population 

density, median income, unemployment percentage, and illiteracy percentage. 

2.2 Transformation and Mapping 

Thirty three ARs in the Rio de Janeiro municipality from the state of Rio de Janeiro, 

Brazil were selected for this study (Figure 1. a.). The following socio-economic variables 

were obtained at the AR level for all 33 spatial units: population density, median income 

including no income, median income excluding no income, percentage of unemployment, 

and percentage of illiteracy. These variables were mapped in order to visualize their 

spatial distributions (Figures 1- b through 2-f). 

2.3 Spatial Autocorrelation 

Tobler’s first law of geography states that “Everything is related to everything else, but 

near things are more related than distant things” (Tobler, 1970, p. 236). Hubert et al. 

define SA as “Given a set S containing n geographical units, the relationship between 

some variable observed in each of the n localities and a measure of geographical 

proximity defined for all n(n–1) pairs chosen from S” (Hubert et al. 1981, p. 224). 

Standard inferential statistics assumes complete randomness (of observations, which is 

referred to as an independent random process (IRP), or complete spatial randomness 

(CSR)). But, spatial data violate this assumption due to the presence of SA. Positive SA 

causes variance inflation. Hence, spatial statistics measures are used to quantify the 

degree of self-correlatedness of a variable as a function of nearness. A spatial weight 

matrix is needed in order to measure SA, which gives the information about relative 

location of pairs of adjacent neighboring locations (binary rook, queen neighbors; first, 

second order neighbors) or all other locations (distance based – Euclidian, rectilinear, or 

network). 

Two widely used indices of SA are provided by Moran (1948) and Geary (1954). 

Global Moran’s I tests for spatial randomness (null hypothesis) and detects the nature 

(positive or negative) as well as degree of SA. The Moran’s I values range from roughly -

1 (high negative SA; dissimilar values cluster on a map) to 1 (high positive SA; similar 

values cluster on a map)—this lower bound can range between -1 and -0.5, whereas this 

upper bound can range from 0.8 to more than 1.3—Moran’s I value denoting no SA is 

−1 (𝑛 − 1)⁄ , which is slightly less than zero. 

The global Geary’s c (null hypothesis of no SA) values range from roughly 0 (extreme 

positive SA), 1 (no SA) to 2+ (extreme negative SA). The extreme values are functions of 

eigenvalues associated with the spatial weights matrix. 

The Moran Coefficient and the Geary Ratio for variable y are given by: 

𝐼 =  
𝑛
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Figure 1. a. Study area representing 33 administrative regions in the Rio de Janeiro 

municipality in the state of Rio de Janeiro, Brazil, b. through f. socio-economic 

variables. 
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where 𝑦̅ = mean of the variable y; 

          𝑦𝑖 = variable value at a particular location I; and, 

  𝑤𝑖𝑗 = weight indexing for location i relative to j (a spatial weights matrix, W, cell 

entry) 

Previous quantitative geographic research documents that human attributes tend to 

display moderate positive SA. This idea was captured by 2005 Nobel Prize winning 

economist Thomas Schelling in his model of segregation (1969, 1971). Keeping this 

observation in mind, the Moran and Geary SA indices were used to measure and map the 

nature and degree of SA for the selected Rio de Janeiro socio-economic variables. 

SA indices need a spatial weight matrix which can define polygons sharing common 

boundaries as neighbors. The Rio study area polygon shapefile includes two disconnected 

islands, which were manually edited and connected to the main land before creating the 

spatial weight matrix. This was done by observing the bridges connecting the islands with 

the main land, so that each of the spatial units (polygons) share at least one common 

boundary or edge. A row standardized spatial weight matrix was created using the 

modified polygon shapefile with connected islands. 

Before proceeding with the Moran Coefficient and Geary Ratio calculations, a Box-

Cox power transformation (log) was performed on population density to make its 

frequency distribution more bell-shaped. Table 2 summarizes the Moran Coefficient and 

Geary Ratio values of SA for each socio-economic variable; all five variables contain 

slight to moderate positive SA. Figure 4 displays the normal quantile plots for each 

variable. 

 

Variable Name 
Moran 

Coefficient 

Z-scores 

(Moran’s I) 

Geary 

Ratio 

Z-scores 

(Geary’s c) 

Population Density 0.23 2.2135 0.56 3.299 

Median Income Excluded 0.47 4.5227 0.71 1.7969 

Median Income Included 0.56 5.274 0.55 2.899 

Percentage of Unemployment 0.37 3.3796 0.65 2.4992 

Percentage of Illiteracy 0.33 3.2141 0.68 2.1011 

Table 2. Summary of Moran Coefficient and Geary Ratio values for socio-economic 

variables in the Rio de Janeiro municipality. 

 

 

  
a. population density (transformed) b. median income excluding no 
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c.  median income including no 

income 

d. percentage of unemployment 

 

 

 

e. percentage of illiteracy  

Figure 4. Normal quantile plots for selected socio-economic variables. 

3. Methodology  

3.1 Network Chains 

A network is developed by respondents recommending subsequent participants. The 

process is initiated by the selection of initial participants, or seeds, from whom the social 

network emanates. The network analyzed in this study originates with six seeds, one of 

which yielded no referrals. Based upon the referral connectivity, the network comprises 

377 chains. Each chain is defined by a seed—a respondent whom is never referred—and 

an end—a respondent with no referrals. Chain lengths range from 2-12 respondents 

(Table 3).  

 

 
Table 3. Number of chains and sub-chains by length. 

NODES 2 3 4 5 6 7 8 9 10 11 12 TOTAL

CHAINS 5 13 21 24 42 44 31 80 53 46 18 377

SUB-CHAINS 2656 2279 1907 1548 1210 896 624 396 199 82 18 11815
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3.2 Simulation Design 

Analysis of the network can be conducted by simulation based upon the network 

connectivity. Starting points and chain lengths could be selected, and sub-chains could be 

traced based upon underlying empirical probabilities. Therefore, the 377 complete chains 

are partitioned into sub-chains, providing a total number of 11,815 possible chains. For 

example, one chain of length 5 consists of two sub-chains of length 4, three of length 3, 

and four of length 2. The prevalence of missing locational data introduces complications 

and constraints to such a simulation experiment. 

4. Anticipated Results  

The anticipated result of this research is that the geographic distribution of a social 

network displays SA. In turn, this feature inflates the sampling variance. Inflation occurs 

because of two factors: (1) the sampling probabilities no longer are equal; and, (2) 

covariance between individuals no longer is zero. This covariation is a function of the 

structure of a social network coupled with SA in its geographic landscape, which are 

correlated. One way to capture this latter effect is to couple a social network with its 

corresponding spatial weights matrix, conceptualizing the social network as being 

articulated first. Griffith (2005) outlines the VIF attributable to SA. Extending this 

specification, and considering only the case of positive SA,  

 
21

N
1

s )/n)TR(TR(    VIF    1  VV   , 

 

where n is the number of observations (i.e., individual or areal units), Vs denotes the 

spatial autoregressive variance component [e.g., )ρ()ρ( s
T

s WIWI  , where sρ  is the 

spatial autoregressive parameter], and VN denotes the network autoregressive variance 

component. This specification indicates that network autocorrelation inflates variance 

beyond what spatial autocorrelation does, and vice versa. It also could be modified by 

including a geographic aggregation matrix, which would smooth the spatial 

autocorrelation effects. 
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