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1. Introduction 

This paper presents an exploratory simulation experiment to investigate the distribution 

of coefficients that are used to construct eigenvector spatial filters (ESFs) (Griffith 2000; 

Griffith 2003). The fundamental idea of ESF exploits the decomposition of a spatial 

variable into the following three components: trend, spatially structured random 

component (i.e., spatial stochastic signal), and random noise. The spatially structured 

component is modeled for with a linear combination of synthetic proxy variables, which 

are extracted as eigenvectors from a spatial weights matrix that ties geographic objects 

together in space; it is added as a control variable to a spatial model specification. This 

control variable identifies and isolates the stochastic spatial dependencies among the 

georeferenced observations, thus allowing model building to proceed as if the 

observations are independent. Identifying the distribution of coefficients used to construct 

this linear combination may support simulation experiments employing the generation of 

spatially autocorrelated random numbers using ESF. 

2. Eigenvector Spatial Filtering 

The ESF methodology utilizes the properties of eigenvectors and their corresponding 

eigenvalues of the transformed spatial weights matrix (I - 11
T
/n)C(I - 11

T
/n), where I is 

an n-by-n identity matrix, 1 is an n-by-1 vector of ones, C is an n-by-n spatial weights 

matrix, and superscript T denotes the matrix transpose operator. Studies, including 

Tiefelsdorf and Boots (1995) and Griffith (1996), show that its n mutually orthogonal and 

uncorrelated (Griffith 2000) eigenvectors, E={E1, E2, …, En}, and n corresponding 

eigenvalues, λ={λ1, λ2, …, λn}, relate to spatial autocorrelation (SA). Important properties 

of these vectors include: 1) they furnish distinct map pattern descriptions visualizing 

latent SA in georeferenced variables, and 2) the eigenvalues index the level of SA of a 

map pattern that is generated when the corresponding eigenvector is mapped on the given 

tessellation. That is, the Moran Coefficient (MC) of the map pattern produced by 

eigenfvector Ej is MCj = λj ·n/1
T
C1.  

The ESF linear regression model specification can be written as k E      Y Xβ E β ε , 

where Ek is an n-by-K matrix containing K eigenvectors, βE is the corresponding vector 

of regression parameters, EkβE is the ESF, and  2

ε~N , σε 0 I  is an n-by-1 error vector 

whose elements are iid normal random variates. Because the linear combination of the 
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eigenvectors, EkβE, accounts for SA, the ESF linear regression specification does not 

suffer from spatially autocorrelated residuals. 

3. Methodology 

Random numbers using a simultaneous autoregressive (SAR) data generating mechanism 

can be simulated with εWIY
1)ρ(  , where matrix W is the row standardized 

geographic connectivity matrix , and ρ is a parameter indicating level of SA. 

Theoretically, εWI
1)ρ(   can be decomposed into a linear combination, Ek βE.  (Griffith 

2003). This property leads the quest for finding the distribution of ESF coefficients βE 

while controlling the level of autocorrelation. The corresponding coefficients can be used 

to generate spatially auto-correlated random numbers using a combination of 

eigenvectors as shown in equation εβEY   Ek  .  

The candidate set of Ek varies based on the magnitude of the SA parameter ρ. The 

number of selected eigenvectors and coefficients βE depend on the result of a stepwise 

regression of the SAR generated random numbers with the candidate set of eigenvectors. 

Visualization of results from a simulation experiment suggests that the frequency 

distribution of the elements of vector βE is similar to the gamma distribution with its scale 

and shape parameters varying with n and the level of SA. The selection of a candidate set 

of eigenvectors also depends on the level of SA. For higher levels of SA, eigenvectors 

with the largest eigenvalues were selected more often; for lower levels of SA, the 

probability of selecting eigenvectors appears to be nearly uniform. 

4. A Simulation Experiment  

A simulation experiment has been conducted using 10-by-10, 25-by-25, 50-by-50, 75-by-

75, and 100-by-100 hexagon tessellations and three levels of SA, with 10,000 

replications. The following are the steps involved: 

1. Generate 10,000 spatially autocorrelated random variables, Y, for each 

tessellation using a SAR data generating mechanism with ρ = 0.1, 0.5 and 0.9. 

2. Calculate the candidate set of eigenvectors for each tessellation and each level of 

SA using the criterion 

]0.6)3.3534/(z  n / ]0.6)  6.1808[(z  [2.1480 0.1742
MC

0.12980.1742
MCe 1

n






 

where, zMC is the Moran coefficient z-score of Y, n+ is the number of eigenvectors 

with positive eigenvalues, and e is an exponential function.  

3. Select the significant eigenvectors, using the Y as dependent variables in stepwise 

regressions with the candidate set of eigenvectors and selection based upon an 

AIC criterion maximizing goodness-of-fit. 

4. Calculate the probability of selection of each significant eigenvectors in 10,000 

cases, retaining those with a minimal empirical probability of 0.01 for further 

analysis. Eigenvectors selected lesser than 100 times out of 10,000 simulations 

are assumed to be not significant. 

5. For the significant eigenvectors coefficients, calculate the shape and scale 

parameters of a gamma distribution.  
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5. Results  

Table 1 shows the candidate set and selected eigenvectors using a stepwise selection 

procedure for different tessellations and different levels of SA. 
 

 Expected 

rho 

Candidate 

set EVs 

Selected 

EVs 

10x10 0.1 9 2 

 0.5 25 10 

 0.9 33 21 

25x25 0.1 44 10 

 0.5 145 61 

 0.9 207 125 

50x50 0.1 44 10 

 0.5 145 61 

 0.9 207 125 

75x75 0.1 373 92 

 0.5 1214 529 

 0.9 1769 1065 

100x100 0.1 670 159 

 0.5 2133 941 

 0.9 3103 1873 

 

Table 1. selected eigenvectors for different tessellations 
 

Figures 1 to 6 display the distributions of coefficients, βE, for randomly selected 

eigenvectors. Each of these histograms has 10,000 coefficients for a given eigenvector, 

and has been overlaid with a corresponding gamma function.   
 

  
Figure 1. 3rd eigenvector of a 10-by-10 

tessellation for ρ = 0.1. 

Figure 2. 37th eigenvector of a 25-by-25 

tessellation for ρ = 0.9. 
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Figure 3. 180th eigenvector of a 50-by-50 

tessellation for ρ = 0.5. 

Figure 4. 700th eigenvector of a 50-by-50 

tessellation for ρ = 0.9. 

  
Figure 5. 2nd eigenvector of a 75-by-75 

tessellation for ρ = 0.1. 

Figure 6. 31st eigenvector of a 100-by-100 

tessellation for ρ = 0.5. 

 

Figures 7 to 12 portray the distributions of gamma distribution shape and scale 

parameters for 25-by-25, 50-by-50, and 75-by-75 tessellations across the number of the 

eigenvectors. Yellow denotes the trend line. In general, the shape parameter value tends 

to increase, and the scale parameter tends to decrease, as the number of eigenvectors 

increases. The shape parameter increment for higher levels of SA tracks an exponential 

curve, whereas the scale parameter decrement tracks a hyperbolic curve. 

 

   
Figure 7. gamma distribution shape parameters for a 25-by-25 tessellation with number 

of eigenvectors on the horizontal axis. The trends are: (a) uniform for ρ = 0.1; (b) linearly 

increasing for ρ = 0.5; and, (c) exponentially increasing for ρ = 0.9 
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Figure 8. gamma distribution scale parameters for a 25-by-25 tessellation with number of 

eigenvectors on the horizontal axis. The trends are: (a) uniform for ρ = 0.1; (b) nonlinearly 

decreasing for ρ = 0.5; and, (c) nonlinearly decreasing for ρ = 0.9 
 

   
Figure 9. gamma distribution shape parameters for a 50-by-50 tessellation with number of 

eigenvectors on the horizontal axis. The trends are: (a) uniform for ρ = 0.1; (b) linearly 

increasing for ρ = 0.5; and, (c) exponentially increasing for ρ = 0.9 
 

   
Figure 10. gamma distribution scale parameters for a 50-by-50 tessellation with number of 

eigenvectors on the horizontal axis. The trends are: (a) uniform for ρ = 0.1; (b) nonlinearly 

decreasing for ρ = 0.5; and, (c) nonlinearly decreasing for ρ = 0.9 

 
 

   
Figure 11. gamma distribution shape parameters for a 75-by-75 tessellation with number of 

eigenvectors on the horizontal axis. The trends are: (a) uniform for ρ = 0.1; (b) linearly 

increasing for ρ = 0.5; and, (c) exponentially increasing for ρ = 0.9 
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Figure 12. gamma distribution scale parameters for a 75-by-75 tessellation with number of 

eigenvectors on the horizontal axis. The trends are: (a) uniform for ρ = 0.1; (b) nonlinearly 

decreasing for ρ = 0.5; and, (c) nonlinearly decreasing for ρ = 0.9 

6. Implications and Future Research 

Correctly identifying the statistical distribution of coefficients will support generating 

spatially autocorrelated random numbers using ESF while controlling for the level of 

autocorrelation. Theoretically, in the generation of spatially autocorrelated random 

numbers, a SAR mechanism uses all of the eigenvectors, whereas with an ESF, the 

stepwise selection is done with eigenvectors reflecting the nature of SA. The statistical 

distribution of the coefficients would be useful for designing Monte Carlo simulation 

studies using ESF. An ESF could allow for more experimental control in a simulation 

experiment. Surfaces beyond 100-by-100 will be included in the future research. 
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