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Abstract 

This paper discusses relationships between the Moran Coefficient (MC; Moran, 1950) 

and the Geary Ratio (GR; Geary, 1954) under different distributional assumptions [nor-

mal, uniform, beta, and exponential] and selected geographic neighbourhood definitions 

(linear, square rook, hexagon, square queen, maximum planar, maximum hexagon, and a 

constant neighbor). It focuses on comparisons of efficiency and power for the MC and 

the GR. Its results should inform features of spatial data analysis. 

 

Keywords: MC, GR, efficiency, power, geographic configuration.  

 

1. Introduction  

The MC and GR are statistics used to quantify the nature and degree of spatial autocorre-

lation. Cliff and Ord (1973, 1981) established their asymptotic normal sampling distribu-

tion properties and the power superiority of the MC versus the GR for only a few types of 

selected small surface partitionings. Tiefelsdorf and Boots (1995) derived the exact dis-

tribution of the MC for small samples, which is seminal work establishing the novel ei-

genvector spatial filtering spatial statistics methodology (Griffith, 1996). This paper ex-

plores relationships between the MC and GR for a wide range of surface partitonings 

across sizes that expand to infinity, derives their approximate variances under different 

distributional assumptions, analyzes their statistical efficiency, presents large sample 

power comparisons for them, and documents some comparative features. 

2. The relationship between the MC and GR  

Let X be the georeferenced variable of interest distributed over a tessellation. Its observa-

tions are 1 2, , , nx x x  . The average of these observations is denoted by 

1

.
n

i

i

x x n


                                                          (1) 

For regular surface partitionings, n P Q  , where P andQ respectively are the number 

of rows and columns. Let  ij n n
c


C  be a surface partitioning’s connectivity matrix, 

where 1ijc   if i  and j  are adjacent (i.e., neighbors), and 0 otherwise; C is symmetric. 

The sample MC and GR of variable X are defined by 

    
2

1 1 1 1 1

,
n n n n n

ij i j ij i

i j i j i

MC n c x x x x c x x
    

                                 (2) 
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     
22

1 1 1 1 1

1 2
n n n n n

ij i j ij i

i j i j i

GR n c x x c x x
    

      .                          (3) 

The GR can be rewritten as (Griffith, 1987, p.44) 

 

 

2

1 1

2

1 1 1

2
1 1

.

2

n n

i ij

i j

n n n

ij i

i j i

x x c
n n

MC
n

c x x

 

  

 
  

   



 

 

                           (4)      

Proof. Substituting equation (2) into equation (4) yields 

        
2 2

1 1 1 1 1 1 1

1 2 2 2 .
n n n n n n n

i ij ij i j ij i

i j i j i j i

GR n x x c c x x x x c x x
      

    
          

     
     (5) 

Substituting      
22

i j i jx x x x x x     
 

, and utilize the symmetry of matrix C, 

yields GR = equation (4). 

3. Derivation of the MC and GR asymptotic variances  

The exact variances of these two statistics (Cliff, and Ord, 1973), where subscript N de-

notes normality and R denotes randomization, are  

 
    

2 2

1 2 0

22

0

3 1
,

1 1 1
N

n S nS S
Var MC

n n S n

 
 

  
                                 (6) 

 
   

     

2 2 2 2

1 2 0 2 1 2 0

22

0

3 3 3 2 6 1
,

1 2 3 1
R

n n n S nS S b n n S nS S
Var MC

n n n S n

          
    

   
 (7) 

      2 2

1 2 0 02 1 4 2 1 ,NVar GR S S n S n S                                       (8) 

 
       

  

 

  

2 2 2

1 2 2 2

2

0

22 2

0 2

2

0

1
1 3 3 1 1 3 6 2

4

2 3

3 1

2 3

R

n S n n n b n S n n n n b

Var GR
n n n S

S n n b

n n n S

                


 

   
 

 

     (9) 

where    
2

0 1 2

1 1 1 1 1 1

, ,
n n n n n n

ij ij ji ij ji

i j i j i j

S c S c c S c c
     

 
     

 
    , and for 

i iz x x  ,

2

4 2

2

1 1

1 1n n

i i

i i

b z z
n n 

 
  

 
  is kurtosis. Because C is symmetric, 

1 0

1 1

2 2 ,
n n

ij

i j

S c S
 

   and 

2

2

1 1

4 .
n n

ij

i j

S c
 

 
  

 
   

Griffith (2010) proposes simplifying equations (6)-(9) through asymptotics assuming a 

normal distribution, producing 

  0

1 1

2 2 ,
n n

A ij

i j

Var MC c S
 

                                              (10) 
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 
2 2

0 22

2 2
1 1 1 1 1 1 0 0 0

22
2 2 ,

2 2

n n n n n n

A ij ij ij

i j i j i j

S SS
Var GR c c c

S S S     

    
       

   
          (11) 

where the subscript A denotes asymptotic. 

The asymptotic variance for the MC is insensitive to the normality and randomization 

assumptions.  

Theorem 1    lim .N A
n

Var MC Var MC


   

Proof.      0lim lim 6 2N A
n n

Var MC equation S Var MC
 

     . 

Theorem 2    lim .R A
n

Var MC Var MC


   

Proof.      0lim lim 7 2R A
n n

Var MC equation S Var MC
 

    
. 

In contrast, the asymptotic variance of the GR is sensitive to the normality and ran-

domization assumptions. 

Theorem 3    lim .N A
n

Var GR Var GR


   

Proof.  lim N
n

Var GR


 lim 8
n

equation


       2

0 2 02 2S S S   .AVar GR  

Theorem 4  lim R
n

Var GR


depends on 2b , the kurtosis of a distribution.   

Proof.          2

0 2 2 0lim lim 9 2 1 4R
n n

Var GR equation S b S S
 

         . 

For the normal, uniform, beta ( 0.5   ), and exponential distributions, the 2b val-

ues are 3, 9/5, 3/2, and 9, respectively, yielding asymptotic variances for GR of 

  2

0 2 02 2 ,ANVar GR S S S                                              (12) 

  2

0 2 02 5 ,AUVar GR S S S                                              (13) 

   2

0 2 02 8 , 0.5 ,ABVar GR S S S                                      (14) 

  2

0 2 02 2AEVar GR S S S  ,                                             (15) 

where the subscripts AN, AU, AB, and AE respectively denote the selected distribu-

tions. Equation (12) coincidences with Griffith’s (2010) result. 

4. Efficiency analysis  

A statistic with a smaller variance is more efficient. The variance ratio of the MC and the 

GR may be defined by  

    ,exact exact exactr Var MC Var GR                                         (16) 

where subscript exact denotes the exact MC and GR variances, given by equations (6) 

and (8), or (7) and (9).  

The following asymptotic variances also are of interest: 

   * 02 / ,A Ar Var MC Var GR S S                                       (17) 

where *A  denotes AN, AU, AB or AE, and S denotes equation (12), (13), (14), or (15). 

If 1r  , then the MC is more efficient than the GR. 

Five different geographic configurations rendering different connectivity matrices il-

luminate the range of possible geographic situations (Table 1). Analysis here focuses on 

their respective variance ratios, which converge to 1 in the limit for all but maximum pla-

nar connectivity. 
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Geographic Configurations Neighbour sums 

 
(1a) Linear 

 
1 1

2 1
n n

ij

i j

c n
 

  , 
2

1 1

4 6
n n

ij

i j

c n
 

 
  

 
   

(1b) 

 
(2a) Square Rook 

   
1 1

2 1 1
n n

ij

i j

c P Q Q P
 

     

 
2

1 1

2 8 7 7 4
n n

ij

i j

c PQ P Q
 

 
    

 
   

 n P Q            (2b) 

 
(3a) Square Queen 

 
1 1

2 4 3 3 2
n n

ij

i j

c PQ P Q
 

     

 
2

1 1

2 32 39 39 46
n n

ij

i j

c PQ P Q
 

 
    

 
 

 n P Q           (3b) 

 
(4a) Hexagon 

 
1 1

2 3 2 2 1
n n

ij

i j

c PQ P Q
 

     

 
2

1 1

2 18 20 19 19
n n

ij

i j

c PQ P Q
 

 
    

 
 

 n P Q          (4b) 

 
(5a) Maximum Planar Connectivity 

   
1 1

6 2
n n

ij

i j

c n
 

       2n Q   

 
2

2

1 1

2 6 22
n n

ij

i j

c n n
 

 
   

 
   

(5b) 

Table 1. Areal unit configuration cases and their neighbor sums 

  

In Table 1, (5a) portrays an unlikely connectivity scheme, which differs from other 

cases. This configuration has Q+2 units (P-by-Q+2 becomes 1-by-Q+2), with two units 

adjacent to all Q+1 other units. Table 2 also introduces maximum hexagon connectivity 

(1a-2a). The number of units in both configurations can be expressed as P-by-Q+2. In 

addition, some of the configurations in Table 1 can be generalized to three dimensions (3-

D). For example, two ends of a linear landscape (Table 1, 1a) can be connected so that it 

becomes a closed circle; two pairs of the opposite ends of a square partitioning can be 

connected so that it becomes a torus. Table 2 portrays these 3-D cases (3a-4a); their 

neighbor sums are 
1 1

n n

ij

i j

c kn
 

 ,

2

1 1

n n

ij

i j

c
 

 
 
 

 
2k n , where k is a constant (2, 4 or 8 here).  

Many remote sensing images can be divided into square lattices, and various connec-

tivity criteria can be employed to establish their spatial adjacency.  
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Geographic Configurations Neighbour sums 

 
(1a) Maximum Hexagon Connectivity, odd Q  

1 1

6
n n

ij

i j

c PQ
 

       2n P Q    

2

2 2

1 1

2( 20

11 10 6)

n n

ij

i j

c P Q PQ

P Q

 

 
   

 

  

   

                         (1b) 

 
(2a) Maximum Hexagon Connectivity, even Q 

1 1

6
n n

ij

i j

c PQ
 

       2n P Q    

2

2 2

1 1

2( 20

11 10 8)

n n

ij

i j

c P Q PQ

P Q

 

 
   

 

  

   

                         (2b) 

 
(3a) Circle connectivity  

1 1

2
n n

ij

i j

c n
 

 , 

2

1 1

4
n n

ij

i j

c n
 

 
 

 
   

 n P Q            (3b) 

 
(4a) Torus connectivity 

1 1

4
n n

ij

i j

c n
 

 , 

2

1 1

16
n n

ij

i j

c n
 

 
 

 
   (rook) 

1 1

8
n n

ij

i j

c n
 

 , 

2

1 1

64
n n

ij

i j

c n
 

 
 

 
   (queen) 

   n P Q             (4b) 

Table 2. Other connectivity cases and their neighbor sums 

4.1 Normal variance ratios 

Substituting equations (10) and (12) into equation (17) yields    
*A ANVar MC Var GR   

 0 0 2 4S S S , where * denotes linear (L), square rook (SR), square queen (SQ), hexagon 

(H), maximum planar (MP), maximum hexagon (MH), and constant neighbors (CN) con-

nectivity. Substituting corresponding 0S and 2S values (see Table 1 (1b-5b), Table 2 (1b-

4b)), and letting n , yields the asymptotic variance ratios between the MC and GR.  

4.2 Uniform variance ratios 

Repeating the steps in §4.1, but with equation (13) rather than (12), yields 

   
*A AUVar MC Var GR     0 0 2 10S S S , and then the asymptotic variance ratios.  

 

4.3 Beta variance ratios 

Repeating the steps in §4.1, but with equation (14) rather than (12), yields 

   
*A ABVar MC Var GR     0 0 2 16S S S , and then the asymptotic variance ratios.  
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4.4 Exponential variance ratios 

Repeating the steps in §4.1, but with equation (15) rather than (12), yields 

   
*A AEVar MC Var GR     0 0 2S S S , and then the asymptotic variance ratios. 

Table 3 summarizes these asymptotic variance ratios, and their related exact counter-

parts and adjustment factors for asymptotic variances. Except for the maximum planar 

case, all exact variance ratios are 1; hence, asymptotic ratios need to be adjusted for GRs. 

This furnishes quantitative evidence that the GR, unlike the MC, is far more sensitive to 

the underlying frequency distribution of a variable. 

 

         Landscape 

 

Distribution 

Linear 
Square 

Rook 
Hexagon 

Square 

Queen 

Maximum 

Planar 

Maximum 

Hexagon 

Constant 

Neighbors 

Nor- 

mal 

AVR 1/3 1/5 1/7 1/9 0 3/25 1/(k+1) 

EVR 1 1 1 1 0 3/7 1 

AVMC 1 1 1 1 1/3 1 1 

AVGR 1/3 1/5 1/7 1/9 1 7/25 1/(k+1) 

Uni- 

form 

AVR 5/9 5/13 5/17 5/21 0 15/59 5/(5+2k) 

EVR 1 1 1 1 0 0.6522 1 

AVMC 1 1 1 1 1/3 1 1 

AVGR 5/9 5/13 5/17 5/21 1 1/2.565 5/(5+2k) 

Beta 

(a=b=

0.5) 

AVR 2/3 1/2 2/5 1/3 0 6/17 4/(4+k) 

EVR 1 1 1 1 0 3/4 1 

AVMC 1 1 1 1 1/3 1 1 

AVGR 2/3 1/2 2/5 1/3 1 8/17 4/(4+k) 

Expo- 

nen- 

tial 

AVR 1/9 1/17 1/25 1/33 0 3/91 1/(1+4k) 

EVR 1 1 1 1 0 0.1579 1 

AVMC 1 1 1 1 1/3 1 1 

AVGR 1/9 1/17 1/25 1/33 1 1/4.79 1/(1+4k) 

Table 3. Asymptotic-to-exact variance ratios and adjustment factors (= *VMC/*VGR. 

AVR or EVR: asymptotic or exact variance ratio. AVMC or GR: AVR of MC or GR). 

 

Landscape 
Abs(Asy/act-1)<=0.025 

 

 
Abs(Act-asy)<=0.01 

       MC                GR          MC               GR 

Linear 42 56           23    27 

Square Rook 88 12        36    11 

Square Queen 161 7        37    93 

Hexagon 121 7        34    72 

Maximum Planar 15 403        10   333 

Maximum Hexagon 157 14        34  5438 

Circle 43 83                23    35 

Torus Rook 84 124           29    36 

Torus Queen 167 207        37    41 

Table 4. Minimum sample sizes for the MC and the GR. 
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Table 4 presents the minimum sample size for which the asymptotic variances approx-

imate their exact variance counterparts, and indicates that the MC asymptotic variance 

furnishes a useful result for relatively small sample sizes. 

4.5 Variance ratio convergence 

Figure 1 portrays exact variance ratio curves as well as values for 184 specimen irregular 

surface partitions. Figures 1a-4a are ideal increasing sample size ratio trajectories for 

normal, uniform, beta, and exponential random variables, respectively, which respective-

ly depict convergence in the interval [13, 100], [10, 100], [8, 100], [23, 100]. Figures 1b-

4b are the same curves extended to n = 7,250, with the 184 specimen surface values su-

perimposed (black dots). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1. Exact variance ratio curves. 

 
 

 

1a 1b 

2a 2b 

3a 3b 

4a 4b 
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5. A power comparison 

Cliff and Ord (1973) conducted limited simulation experiments comparing the power of 

the MC and GR, concluding that the MC is more powerful. One remaining unanswered 

question asks what happens across a wider range of sample sizes and attribute variable 

types. 

5.1 Establishing statistical power 

The power of a test is 1  , where  is the probability of committing a Type II error (i.e., 

failing to reject the null hypothesis when it is false) for a given significance level , 

which is the probability of committing a Type I error (i.e., rejecting the null hypothesis  

when it is true). If 1 1MC GR     (i.e., the Type II error probability for the MC is less 

than the Type II error probability for the GR), then the MC is more powerful than the GR. 

Step 1. Let the null and alternative hypotheses be 

0 :H  No spatial autocorrelation;       1 :H  Nonzero spatial autocorrelation. 

Suppose 0.05.   

Step 2a. Consider the Moran test assuming normality defined by equation (18), where 

 NVar MC  is equation (6). The critical value (CV) is    1 1MC Nz MC n Var MC     . 

 
1

,
1

MC NN Var MC
n

 
 

 
                                           (18) 

If 1.96MCz  , then the statistical decision is to fail to reject H0. 

Step 2b. Parallel results for the GR include 

  1,GR NN Var GR                                            (19) 

where  NVar GR is equation (8), and    1GR Nz GR Var GR  . If 1.96GRz  , then 

the statistical decision is fail to reject H0. 

Step 3a. If the statistical decision is fail to reject H0 when it is not true, a Type II error 

occurs. The CV under the true sampling distribution is given by 

  , NN a Var MC (    1,1 , 1 1a a n      ).                             (20) 

The CV under the null distribution [equation (18)] is 

   1.96 1 1 ,CV Nz Var MC n                                       (21) 

The CV under the true distribution [equation (19)] is    ts CV Nz z a Var MC  . Substi-

tuting equation (21) into this equation yields 
 

1 1
1.96

1
ts

N

z a
nVar MC

 
    

 

, where the 

subscript ts denotes the standard CV under the true distribution. Given 

 
2

1 1
1.96

1
N

z a
nVar MC



 
   

 
and

 
2

1 1
1.96

1
N

z a
nVar MC



 
     

 
, the power of 

the MC is 

   2 21 1MC x z x z        .                                  (22) 

Step3b. For the GR, the CV under the true distribution is equation (23), and the CV 

under the null distribution [equation (20)] is equation (24). The CV under the true distri-
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bution is    ' '

ts CV Nz z Var GR  , where  is the mean in equation (23). Substituting 

equation (24) into this formula yields equation (25). 

 

 
 

2

1 1

2

1 1 1

1 1
,

n n

i ij

i j

Nn n n

ij i

i j i

x x c
n n

N a Var GR
n

c x x

 

  

  
  

   


 
 

 
 

 

 

(  
1

1,1 ,
1

a a
n

   


 ).  (23)                            

 ' 1.96 1,cv Nz Var GR                                             (24) 

 

   

   

 

 

2

1 1 0'

2

1

1
11

1.96

n n

i ij

i j

ts n

N N
i N

i

n x x c
a n S

z
Var GR n Var GRx x Var GR

 



 
   

     



 



,                   (25) 

Defining
'

2z   and 
'

2z  in the same way as 
2z  and 

2z , the power of the GR is 

   ' '

2 21 1GR x z x z        .                                  (26) 

Figures 2 and 3 present selected power curves plotted with their respective minimum 

sample sizes. The MC is more powerful than the GR for the rook configuration, while the 

GR is more powerful than the MC for the torus rook connectivity. For the hexagon and 

maximum hexagon cases, the MC is more powerful than the GR for positive spatial auto-

correlation, but not always for negative spatial autocorrelation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Planar and torus rook square surface partitionings. (a) Top left: square rook, P = 

6, Q = 6; (b) Top right: square rook, P = 3, Q = 4; (c) Bottom left: torus rook, P = 5, Q = 

6; (d) Bottom right: torus rook, P = 6, Q = 6. 

5.2 Theoretical evaluation 

Equation (2) can be rewritten using matrix notation such that (𝑰 −
𝟏𝟏𝑇

𝑛
)𝑪 (𝑰 −

𝟏𝟏𝑇

𝑛
) is in 

the numerator of the MC, where 1 is an n-by-1 vector of ones, and T denotes the matrix 

transpose operation. The eigenvalues of this matrix times 
𝑛

𝟏𝑇𝑪𝟏
 furnish the complete set of 

distinct MC values for a geographic landscape, with the extreme values establishing the 

minimum and maximum possible MC values. Corresponding GR values can be calculat-

ed with the eigenvectors of this matrix. The relationship between MC and GR in this con-
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text is given by  min

c
GR a b MC MC   . For linear (circle) adjacency and a square tes-

sellation with rook (torus rook) adjacency, a = 2, b= -1, and c = 1. For a queen (torus 

queen) adjacency, a = 1.5, b= -1, and c = 1. For a P-by-Q hexagonal tessellation, a=1.5, 

b = -0.99063 - 0.78935(1/P+1/Q)
0.87125

 + 0.00205P/Q, and 

c = 1.05828 - 0.87248*(1/P+1/Q)
0.57358

 + 0.00385P/Q. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Hexagon and maximum hexagon surface partitionings. (a) Top left: hexagon, P 

= 5, Q = 7; (b) Top right: hexagon, P = 8, Q = 9; (c) Bottom left: maximum hexagon, P = 

5, Q = 7 ;(d) Bottom right: maximum hexagon, P = 73, Q = 74 . 

 

6. Conclusions  

The MC may not be uniformly more powerful than the GR for all sample sizes and geo-

graphic configurations. The MC asymptotic variances are reliable for most modern day 

sample sizes, which are greater than 100. The GR asymptotic variance varies with geo-

graphic configuration as well as attribute variable type, both of which determine efficien-

cy when geographic sample size goes to infinity. Finally, the relationship between the  

MC and the GR appears to vary across areal unit configuration types. 
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