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Abstract 

Ground level ozone is one of the air pollutants with negative impacts on human health 

and environment. The complexity of physical process of ozone formation makes it 

difficult to predict ozone concentration accurately. In this work clustering techniques and 

multiple regression analysis are used to construct a simply interpretable forecasting 

model. Time series of ozone and meteorological variables in Dallas-Fort Worth area for 

12 years at 14 monitoring stations are acquired and processed. First, k-means cluster 

analysis is performed on ozone time series to specify data driven ozone seasons at each 

station. Next, spatial hierarchical clustering is performed to find ozone zones in the area 

during each ozone season recognized in the previous step. Finally, multiple linear 

regression between meteorological variables and ozone in each zone is developed. For 

liner forecasting temperature, solar radiation, wind speed, and previous ozone values are 

used since ozone is strongly auto-correlated. Monitoring stations in each temporal and 

spatial cluster show consistent behavior which makes it possible to perform ozone 

forecasting even when a station is off. Results show high accuracy of ozone forecasting 

and yet simple to interpret the link between meteorology and ozone behavior. Also, 

clustering results are useful to understand the temporal and spatial patterns of the ozone 

dynamics in the area. 

 

1. Introduction  

Ozone is a highly reactive chemical species with proven negative impacts on humans. 

Ground level ozone pollution is formed by a chain of photochemical reactions in the 

presence of nitrogen oxides (NOX) and reactive volatile organic compounds (VOCs). 

Tropospheric ozone formation is a complex process (Seinfeld and Pandis, 2012) and 

displays strong seasonal and diurnal patterns with higher concentration during summer 

and in the afternoon. Ozone prediction is a difficult task due to the complexity of the 

formation process and spatio-temporal variation in both meteorological factors and 

precursors. 

mailto:MahdiAhmadi@unt.edu
mailto:Yan.Huang@unt.edu
mailto:Kuruvilla.John@unt.edu


99 
 

Over the decades, several statistical techniques have been developed to account for the 

effect of meteorological factors and predict ozone (Lou Thompson et al., 2001, Schlink et 

al., 2003). The simplest model is multiple linear regression that assumes an additive 

linear relationship to link ozone concentration to meteorological factors (Feister and 

Balzer, 1991, Korsog and Wolff, 1991, Dueñas et al., 2002, Fiore et al., 1998, Walker, 

1985, Kuntasal and Chang, 1987, Zeldin et al., 1990, Cassmassi and Bassett, 1993, 

Abdul-Wahab et al., 1996, Katsoulis, 1996). Although linear models are easy to interpret 

but they are generally poor in accuracy. Also methods such as principal component 

analysis (PCA), artificial neural networks and clustering techniques are proposed to 

reduce the dimensionality of the problem to make prediction and interpretation easier 

(Al-Alawi et al., 2008, Sousa et al., 2007, Lengyel et al., 2004, Guardani et al., 2003, 

Kovač-Andrić et al., 2009, Kaburlasos et al., 2007, Bruno et al., 2004, Sahu et al., 2007, 

Sahu and Bakar, 2012, Austin et al., 2014). Ozone forecasting can be performed more 

effectively once the temporal and spatial patterns are quantified. In this paper clustering 

techniques and multiple linear regression analysis are used to explain the patterns of 

ozone in Dallas-Fort Worth (DFW) area and also to develop a linear model for ozone 

prediction. 

2. Method 

The objective of this work is to perform clustering of ozone time series and spatial 

clustering of ozone monitors to produce better input for linear regression analysis. The 

flow chart of the data mining tasks is presented in fig 1. Accordingly, following 

procedure is performed: 

Step I: Acquiring dataset 

Step II: Pre-processing data 

Step III: performing K-means cluster analysis on time series of 8-hr average daily 

maximum ozone. The goal is to recognize ozone seasons. 

Step IV: evaluating the overlap between ozone seasons at different monitoring stations to 

determine the best split for the entire monitoring network (i.e. regional ozone 

seasons) 

Step V: performing hierarchical cluster analysis on 1-hr ozone time series of all 

monitoring stations for each ozone season. The goal is to determine the best 

spatial clustering (ozone zones) of in each ozone season. 

Step VI: developing multiple linear regression model for each ozone zone in each season. 

 

Ozone and 
meteorological 
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reading from 
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Pre-processing 
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Data mining project

8-hr ozone pattern 
recognition using k-
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Post-processing 
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Developing linear 
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Figure 1. Flow chart of the data mining tasks 
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3. Dataset 

Dallas-Fort Worth (DFW) Metroplex is chosen as the study area. Measurement data 

collected by TCEQ (Texas Commission on Environmental Quality) CAMS (Continuous 

Air Monitoring Stations) were used for entry to dataset. The map of CAMS in DFW area 

is shown in fig. 2. The dataset includes 1-hr measurement time series of ozone (O3), 

ambient temperature (T), solar radiation (SR), wind speed (W) for 12 years (2002-2013). 

The dataset approximately includes 5886720 total entries. Time series of variables at C13 

CAMS are presented in figs 2 to 7. 

 

 
Figure 2. Map of the study area and locations of Continuous Air Monitoring Stations 

(CAMS) 
 

 
Figure 3. Time series of 1-hr ozone measured at C13 CAMS 
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Figure 4. Time series of 1-hr solar radiation measured at C13 CAMS 

 
Figure 5. Time series of 1-hr temperature measured at C13 CAMS 

 
Figure 6. Time series of 1-hr temperature measured at C13 CAMS 
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Figure 7. Time series of 8-hr average daily maximum ozone (top left); time series for one 

random year (top right); 8-hr average ozone profile for three random days measured at 

C13 CAMS 

4. Data Mining 

After steps I and II (data acquisition and pre-processing) for step III, simple k-means 

clustering analysis was performed on time series of 8-hr average daily maximum ozone. 

Clustering analyses were performed with different number of clusters (k) and two 

distance function (Euclidean and Manhattan distance) to find the optimum arrangement. 

Results show no significant difference between Euclidean and Manhattan distance 

functions. To select number of clusters (k) three main criteria were considered (1) a 

solution with reasonable within-cluster sum of square error (SSW); (2) clusters with 

minimum variability in each cluster; (3) high interpretable solution based on the 

knowledge of the ozone pollution in the area. Result of the clustering analysis for C13 

CAMS is shown in fig. 8. Plot box representations of ozone data in each temporal cluster 

are shown in figs. 9 to 12. In Step (IV) the results are used to produce three ozone season 

clusters based on their share in each month of the year: low, moderate, and high (shown 

in Table 1). 
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Figure 8. Seasonal clusters of ozone using k-means method at C13 CAMS 

 

 
Figure 9. Box plot presentation of CAMS in temporal cluster #1 

 
Figure 10. Box plot presentation of CAMS in temporal cluster #2 
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Figure 11. Box plot presentation of CAMS in temporal cluster #3 

 
Figure 12. Box plot presentation of CAMS in temporal cluster #4 

 

 

Cluster Season Months 

#1 Low Jan Feb Nov Dec 

#2 - - - - - 

#3 Moderate Mar Apr May Oct 

#4 High Jun Jul Aug Sep 

Table 1. Ozone seasons resulted from ozone time series clustering 
 

In step V, CAMS in each season were clustered based on similarities so that spatial 

pattern of ozone behavior can be recognized. Agglomerative hierarchical cluster analysis 

was performed following the Ward’s method where the increase in squared error when 

two clustered are merged is the criterion for making a new cluster. Fig. 13 shows the 

hierarchical trees and clusters on the map of the area. The average value of ozone in each 

zone (i.e. cluster) is used with inverse distance weighting function (Fortin and Dale, 

2005) in ArcGIS
©

 software to produce the maps. 
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(Low ozone season) 

 
 

(Moderate ozone season) 

  

(High ozone season) 

 
 

 

Figure 13. Hierarchical cluster trees and average ozone concentration for low, moderate, 

and high (top, middle, bottom) seasons 
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5. Ozone Forecasting 

The last step is developing a multiple linear regression model. The general form of the 

multiple linear function for ozone forecasting ozone at time (t) is given by: 

 

Log[𝑂3]𝑡 = 𝛼𝑇𝑡−𝑖 + 𝛽SR𝑡−𝑗 + 𝜒𝑊𝑡−𝑘 + 𝜔 Log[𝑂3]𝑡−𝑙 + 𝜆  (1) 

 

where 𝛼, 𝛽, 𝜒, 𝜔, 𝑎𝑛𝑑 𝜆 are linear regression coefficients for T (temperature) at time 

𝑡 − 𝑖, SR (solar radiation) at time 𝑡 − 𝑗, W (wind speed) at time 𝑡 − 𝑘, and logarithm of 

ozone at time 𝑡 − 𝑙 respectively. The goal is to determine coefficients and time lags so 

that R
2
 (coefficient of determination) and RMSE (root mean square error) of the fitting 

are optimum. The best time lags in were determined by varying i, j, k, and l 

independently and evaluating R
2
 and RMSE. Results show the best time lag for 

meteorological factors is zero (𝑖 = 𝑗 = 𝑘 = 0) and for previous ozone is one hour (𝑙 =
1). 

Time series of average 1-hr ozone in three spatial clusters in the high season (shown in 

fig. 13, bottom) were forecasted by three independent multiple linear regression models. 

The parameters of liner regression model are presented in Table 1. The scatter plot of 

predicted versus observed 1-hr ozone concentration for three spatial clusters during high 

ozone are shown in fig. 14. The linear model developed for each cluster is applied to 

predict ozone and the results are shown in fig. 15. High accuracy of prediction even 

without using time series of ozone precursors is shown. 
 

 

Cluster 𝛼 𝛽 𝜒 𝜔 𝜆 R
2
 RMSE 

#1 0.002797 0.359812 0.021030 0.793794 0.176548 0.827 7.361 

#2 0.000206 0.241734 -0.000247 0.871374 0.356038 0.890 5.142 

#3 0.002699 9.652480 0.027754 0.687160 0.311890 0.827 7.872 

 

Table 1. Summary of linear regression parameters for spatial clusters in high ozone 

season 
 

 

   
  

Figure 14. Scatter plots of predicted against observed ozone concentration for three 

clusters in high ozone season 
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Figure 15. Comparison of observed and predicted 1-hr ozone concentration in spatial 

clusters in high ozone season 
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6. Conclusion 

In this research multivariate data mining techniques were used to increase ozone 

forecasting accuracy and ease the interpretation of the model. Instead of categorizing 

time series to conventional seasons of the year, ozone seasons were driven from the 

measurement data. Temporal pattern recognition helps reducing the variability of ozone 

in each cluster. Also, hierarchical cluster analysis was performed on fourteen monitoring 

stations in the area to recognize spatial pattern. The method allows to forecast ozone for a 

zone even when all but one of the air monitoring stations are down. Measurement data is 

used to validate the accuracy of linear models in each cluster. Results show very high 

accuracy of ozone forecast using only meteorological variables. Therefore, it can be 

concluded that using data mining techniques in the proposed way can increase accuracy 

of the estimating ozone and flexibility of forecasting. 
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