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Abstract  

Clustering is a widespread method to explore patterns in large spatio-temporal datasets. 

Most clustering studies are, however, performed either from a spatial or from a temporal 

point of view. This is sub-optimal because patterns explored from a spatial perspective 

cannot describe the time-varying behavior present in the dataset and vice versa. Here we 

illustrate a co-clustering-based analysis that enables the simultaneous analysis of spatial 

and temporal patterns. In particular we show that by combining the Bregman block 

average co-clustering with I-divergence and the k-means algorithms we can extract the 

main patterns of leaf onset over Europe, northern Africa, Turkey and the Middle East. 

Our results indicate that four main spatial patterns exist in the period under study (1950 

to 2011). These patterns were visualized using maps and a timeline was used to indicate 

the years of occurrence of these patterns.   
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1. Introduction  

Clustering is a widespread method to analyze patterns in large spatio-temporal dataset. It 

detects groups of similar data and empowers analysts, as clustering helps to understand 

the data at a higher level of abstraction (Andrienko et al., 2009). Until now, most 

clustering studies are performed either from a spatial or from a temporal point of view. 

Take time evolving values for a variable measured at several locations as an example. 

This data is typically arranged in a matrix where each row represents a geographic 

location and each column contains the value of the variable at each timestamp. From a 

spatial point of view, locations can be regarded as objects and each timestamp as an 

attribute in this matrix and clustering this data will identify location-clusters with similar 

values along all timestamps. Alternatively from a temporal point of view, one can 

(virtually) transpose the matrix and perform a temporal clustering. Now each timestamp 

can be regarded as an object and each location as an attribute and clustering will provide 

the timestamp-clusters with similar values along all locations. However, both types of 

clustering are sub-optimal in the sense that patterns explored by only using spatial 

clustering cannot describe the time-varying behavior present in the dataset and vice versa 

(Deng et al., 2013). Co-clustering enables the simultaneous analysis of spatial and 

temporal patterns. 

The rest of the abstract is organized as follows: section 2 contains a brief description 

of co-clustering and more details on the specific co-clustering algorithm used in this 
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study; section 3, demonstrates the use of co-clustering for a real world application: the 

study of long-term spring phenological patterns over Europe; finally, section 4 contains 

the conclusions of our work.    

2. Co-clustering 

Co-clustering regards locations and timestamps equally (Han et al., 2012). This means 

that similar locations are mapped to location-clusters and similar timestamps to 

timestamp-clusters at the same time. Co-clusters are located at the intersection of location 

and timestamp clusters. Co-clustering results are thus a series of non-overlapping subsets 

of rows and columns of the original data matrix that contain similar data.  

In 2007, Banerjee and colleagues developed a generic co-clustering algorithm called 

Bregman co-clustering. In the same publication, they also proved the superiority of an 

information theory-based metric called the I-divergence for co-clustering complex 

datasets. Wu et al. (2015) recently applied the Bregman block average co-clustering 

algorithm with I-divergence (BBAC_I), a special case of the previously mentioned 

algorithm that preserves the co-cluster averages, to Dutch temperature data and 

successfully identified co-clusters containing similar temperatures along both the spatial 

and the temporal dimensions. Therefore, we adopted the BBAC_I algorithm for this 

paper too. This algorithm can be used to cluster positive data matrices with real-valued 

elements, which represent co-occurrences or joint probability between two random 

variables. It treats the co-clustering as an optimization problem in information theory. In 

the solution to this problem minimizes the loss of mutual information between the 

original and the co-clustered data matrix. Briefly, the algorithm starts with an initial 

random mapping from locations to location-clusters and years to year-clusters. This 

allows the calculation of the co-clustered matrix. Then the loss in mutual information is 

calculated as the I-divergence between the original and the co-clustered matrices. After 

that, the algorithm starts an iterative process to update the mapping from locations to 

location-clusters and years to year-clusters to minimize the loss function (see Banerjee et 

al, 2007 and Wu et al., 2015 for more details and the pseudo-code of the BBAC_I 

algorithm). 

3. Case study 

Phenology is the science that studies the timing of recurrent life cycle events in plants 

and animals, their inter-relations and the impact of environmental factors on them (Lieth, 

1974).  Phenological studies are an excellent proxy to study climate change as the timing 

of many life cycle events (e.g. appearance of first leave or flower in a plant) is strongly 

influenced by environmental factors. Thus, the identification of phenoregions and their 

changes in time provide value information on the impacts of climate change on the area 

of interest. Here we use the extended spring index (SI-x; Schwartz et al., 2013) models to 

characterize spring onset over Europe. More precisely, we predicted the phenological 

event “first leaf” from daily maximum and minimum E-OBS temperature records. These 

datasets cover the period 1950 to 2011 and have a spatial resolution of 0.25 degrees. 

Then we applied the BBAC_I algorithm to identify co-clusters that contain similar first 

leaf dates (FLD) along the spatial and temporal dimensions. We asked the algorithm to 

identify 45 spatial groups and 4 temporal groups (Figure 1). We used this relatively large 

number of clusters because we wanted to have a fine “segmentation” of the data that 
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would allow a regrouping into more meaningful co-clusters. Such a re-grouping is needed 

because the BBAC_I co-clustering algorithm assigns full rows (spatial units) / columns 

(year) to the co-clusters whereas rows and columns can contain some heterogeneity. In 

this study we use k-means to refine the 45 by 4 co-clusters identified by the BBAC_I 

algorithm. The value of k was optimized using the Silhouette method, which identified 

five FLD groups that were named “very late”, “late”, “early”, “very early” and 

“abnormal”. After that, the re-grouped FLD data matrix was projected back to the 

geographic space (Figure 2; left) to generate four distinct FLD spatial patterns. These 

results show that the first years of the period under study had very late FLD (i.e. cold 

springs, especially in northern Russia, Scandinavian countries, Iceland and few areas of 

Western Europe where the Alps are located). Recent years, with the exception of 1996, 

display early FLD (figure 2; right). This is, recent years exhibit warm springs, 

particularly in most of the Iberian Peninsula, northern France and Ireland. Results also 

show that the E-OBS temperature dataset might have some quality issues at selected 

locations/years. For instance, southern Iceland has abnormal FLD values for the 62 years 

covered by the temperature datasets. 

 

 
 

Figure 1. The output of the co-clustering: a reordered FLD matrix with 45 by 4 FLD co-

clusters. The X-axis shows the 62 years of the dataset arranged from year-cluster1 to 

year-cluster4. The Y-axis shows all the grid cells from location-cluster45 to location-

cluster1. The greener the color, the earlier the FLD value.  
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Figure 2. Left panels: the four FLD spatial patterns identified in this study. The greener 

the color the earlier the spring; red cells indicate cells with “abnormal” values. Right plot: 

a timeline with the temporal variability of the spatial patterns in the period 1950 to 2011. 

 

4. Conclusions 

In this abstract, we have presented a novel analytical approach to extract spatio-temporal 

patterns. The approach is based on the Bregman block average co-clustering algorithm 

with I-divergence (BBAC_I), which regards space (locations) and time (timestamps) as 

equally important dimensions. The BBAC_I algorithm optimizes the composition of the 

co-clusters by minimizing the loss of mutual information between the original data matrix 

and the co-cluster one. This optimization is done by moving full rows (space) and full 

columns (time), neglecting the heterogeneity of the rows/columns. Thus, here we used 

the BBAC_I to produce many co-clusters that were later regrouped into an optimal 

number of clusters using k-means and the Silhouette method,   

The proposed approach was illustrated with a spring phenological dataset: 62 years of 

modelled first leaf dates (FLD) over Europe, northern Africa, Turkey and the Middle 

East. Our results indicate that co-clustering, coupled with k-means, can efficiently 

capture complex spatio-temporal patterns in large datasets. Five FLD groups arranged in 

four fundamental FLD spatial patterns were discovered in the dataset. This co-clustering 

based approach also allowed us to the study the temporal dynamics of the four spatial 

patterns.   
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