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Abstract  

We present a pattern-based regionalization of the conterminous U.S. – a partition of the 

country into a number of mutually exclusive and exhaustive regions that maximizes the 

intra-region stationarity of land cover patterns and inter-region disparity between those 

patterns. The result is a discretization of land surface into a number of landscape pattern 

types (LPTs).  First, the entire NLCD is partitioned into a grid of 500  500 pixels blocks 

(15 km scale).  The NLCD classes of pixels within a block forms a local landscape 

pattern which is mathematically represented by a histogram of co-occurrence features. 

Using the Jensen-Shannon divergence as dissimilarity function between the patterns we 

cluster the local landscape patterns into several LPTs. The broad-extent maps of 

progressively more generalized LPTs are shown and discussed.  
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1. Introduction  

A landscape pattern type (LPT) is defined (Wickham and Norton, 1994) as a spatial unit 

containing a unique quasi-stationary (small spatial gradient) pattern of land covers 

classes. Identification and delineation of LPTs in a large area makes possible the creation 

of broad-extent maps which are of significant interest for conservation, planning, as well 

as for academic research. Availability of high resolution land cover datasets on 

continental and even global scales makes possible to approach the problem of 

regionalization of large areas into LPTs from a computational perspective. In this paper 

we present a series of regionalizations of the entire conterminous U.S. into progressively 

more generalized LPTs using recently developed method (Jasiewicz and Stepinski, 2013; 

Niesterowicz and Stepinski, 2013, Jasiewicz et al., 2015) that subdivides a land cover 

dataset into an arbitrary grid of local landscape patterns (LLPs) and hierarchically 

segments that grid into regions consisting of similar LLPs. We consider resultant regions 

to constitute the sought-after LPTs.  

Previous attempts at delineating LPTs algorithmically include the works by Cardille 

and Lambois (2009) and by Partington and Cardille (2013). The first of these two works 

has identified 17 different LPTs across the U.S. but did not delineate their spatial extents 

so no map was produced. The second work was applied to the Canadian province of 

Quebec and has identified and mapped 5 LPTs. Both methods used a vector of landscape 

indices to characterize LLPs and the Euclidean distance to cluster LLPs in data space. 
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The data clusters are taken to be the south-after LPTs. We use a different approach that 

utilizes histograms of pattern co-occurrence features to represent local landscapes and 

uses probabilistic dissimilarity measure (Jensen-Shannon divergence) between two 

histograms to segment and cluster the grid of LLPs into the LPTs.  

2. Data and Methods  

We use the National Land Cover Dataset (NLCD 2011) as an input. The NLCD has 16 

land cover classes and covers the entire conterminous U.S.  We divide the NLCD into a 

regular square grid of 500  500 pixels blocks setting the scale of a local landscape at 15 

km. A pattern of NLCD classes in each block constitutes a LLP. We calculate co-

occurrence pattern features (Chang and Krumm, 1999) from the pixels in the block and 

construct their histogram. A co-occurrence feature is a pair of classes assigned to two 

neighboring pixels.  Further calculations are performed on a 322  209 grid of LLPs with 

each grid cell characterized by a 136-bins co-occurrence histogram. Dissimilarity 

between LLPs is calculated using the Jensen-Shannon divergence between the histograms 

which represent them. The grid is first segmented into 6217 segments using a region 

growing algorithm. The segmentation step is performed to reduce (by an order of 

magnitude) the number of objects to be clustered and to assure spatial cohesion of LPTs. 

In the second step the segments are clustered using a hierarchical clustering algorithm.   

 

 
 

Figure 1. Hierarchical regionalization of LPTs.  (A) Dendrogram illustrating merging of 

LPTs from nine types down to one. (B1 to B4) Regionalization maps for a number of 
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LPTs as indicated.  (C1 to C3) Illustration of hierarchical merging of LPTs. Legends to 

LPTs and NLCD are given in Fig.2 

 

 

 
 

Figure 2. (A) Boundaries of nine LPTs superimposed on NLCD. (B) NLCD legend. (C) 

Map of nine LPTs with a legend. (D) Characteristic land cover patterns for each LPT.  
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3. Results  

The results of hierarchical clustering are visualized by a dendrogram (Fig. 1A). The 

dendrogram has been cut at the level of 9 nodes although it extends down to 6217 

original segments. Each node represents a LPT. Any number of LPTs, from 1 to 6217 can 

be selected for mapping, but the smaller the number of LPTs the more generalized 

patterns they represent. Figs. 1B1 to 1B4 show maps of four, six, nine, and fifteen LPTs, 

respectively. The legend to nine LPTs is given in Fig. 2B. Each more generalized LPT 

consists of a number of more specific LPTs.  This is illustrated in Figs. 1C1 to 1C2 which 

show regionalization maps zoomed into a region centered on Minneapolis, MN.  A map 

in Fig.1C1 corresponds to nine LPTs (nationwide) and a map in Fig.1C2 corresponds to 

delineation of 15 LPTs.  Fig.1C3 shows the NLCD with superimposed boundaries of 15-

LPTs delineation. More generalized LPTs of cultivated crops matrix (brown) and 

deciduous forest mosaic (light green) are divided into more specific LPTs. 

Fig.2 shows the details of regionalization of NLCD into nine LPTs. The boundaries of 

nine LPTs are superimposed on the map of NLCD in Fig.2A and the NLCD legend is 

given in Fig.2B. The map of nine LPTs and their legend is given in Fig.2C. Naming LPTs 

is difficult because they are complex. We use a term matrix to describe a pattern 

dominated by a single NLCD class and the term mosaic to describe pattern to which 

several NLCD classes contribute significantly. Fig.2D shows medoids of all nine LPTs. 

A medoid is the LLP whose average value of dissimilarity to all other LLPs in the LPT is 

minimal; it represents a typical landscape in the LPT. 

4. Conclusions  

We presented an exploratory approach to the analysis of the entire NLCD using an 

unsupervised machine learning methodology. The novel aspect of our methodology is a 

conversion of a very large NLCD into a smaller grid of local landscape patterns. This 

enables an efficient computation of regionalization using a grid of local landscapes 

instead of raster of land cover classes. The crucial technical know-how is the numerical 

representation of LLPs and means of measuring dissimilarity between LLPs. Because our 

method works with categorical data (land cover data) it is computationally efficient and 

could be applied to large datasets (like the NLCD).  A similar methodology has been 

developed (Vatsavai 2013) to delineate LPTs directly from a multispectral image but at 

the price of much greater computational cost which limits its applications to relatively 

small regions. 

As the method is exploratory, an analyst may choose the values of free parameters. 

Here we study landscape patterns on the scale of 15 km. Another choice is a number of 

LPTs to map. Hierarchical character of our regionalization helps to make this decision, 

which is subjective and depends on how specific or generalized LPTs are needed to 

illustrate a given point. An interesting insight is gained by studying a dendrogram 

(Fig.1A). With only two LPTs selected the U.S. is basically divided into western and 

eastern parts. With six LPTs selected the western part breaks into evergreen forest and 

shrub and the eastern part breaks into cultivated crops and deciduous forest. There are 

also two additional LPTs corresponding to grassland (in the middle of the country) and 

water. With nine LPTs selected a deciduous forest LPT (located predominantly in the 

eastern part of the U.S.) breaks into four LPTs one of which includes urban mosaic. We 

think that nine LPTs reflect well the major patterns of land cover in the U.S. on the scale 
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of 15 km. More specific LPTs can be obtained by analyzing more LPTs.  Investigating 

smaller scales of pattern may reveal additional types pattern types (like small towns) 

which are just not present at the larger scale. 
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