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Abstract 

Checking the consistency of volunteered geographic information is a challenging task. 

Current approaches addressing this challenge are costly and time consuming as they 

heavily rely on human interventions. Here, we propose a geocomputational workflow 

based on the availability of relevant contextual geoinformation. The workflow consists of 

three main steps: 1) dimensionality reduction using the t-SNE to facilitate further analysis 

and interpretation of the results, 2) model-based clustering to group the volunteered 

observations according to their context conditions, and 3) boxplots to highlight 

inconsistent volunteered observations for each of the clusters. This workflow was 

successfully tested using volunteered observations on the timing of the first flower of 

lilac plants. Results indicate that several observations were inconsistent (i.e. unusually 

early/late regarding their climatic context). These observations are not necessarily wrong, 

but they should be used carefully to prevent introducing unduly biases in subsequent 

scientific studies.  
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1. Introduction  

Recent improvement in information communication and mobile location-aware 

technologies has led to the production of huge amounts of geoinformation by volunteers. 

This phenomenon is called volunteered geographic information or VGI (Goodchild, 

2007). In VGI, non‐experts collect, distribute and, even, analyse geoinformation. These 

activities provide scientists with a novel source of data. For instance, VGI is commonly 

used in phenology, i.e. the study of periodic plant and animal life cycle events and how 

seasonal and inter‐annual variations in climate affect them.  

VGI quality is, however, a major concern, especially when applying it for quantitative 

analyses(Flanagin and Metzger, 2008, Goodchild and Li, 2012). This is because VGI 

does not often follow scientific principles of sampling design, and levels of expertise vary 

among volunteers (Kelling et al., 2011, See et al., 2013, Comber et al., 2013). Moreover, 

unlike traditional geographic information, VGI typically lacks quality checking 

mechanisms (Elwood et al., 2013, Goodchild and Li, 2012).  

Among VGI quality problems, inconsistency is considered an important one since it 

biases VGI-based analysis and modeling results (Schlieder and Yanenko, 2010, Yanenko 

and Schlieder, 2012, Ferster and Coops, 2013). Inconsistent VGI are those that are 

implausible regarding their geographic locations or time. They appear frequently in VGI 

due to the non-professional and subjective character of VGI.  
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Current approaches to deal with inconsistency in VGI mostly rely on human 

interventions. However, such approaches are often costly and time-consuming, and are 

impracticable in many situations such as monitoring of fast-changing phenomena such as 

phenological events (e.g. first flowering). Clearly there is a need to identify inconsistent 

VGI in a robust and automated fashion.  

This study proposes an automated workflow for identifying inconsistent VGI that uses 

contextual geoinformation and computational methods to solve the problem. The rest of 

the paper describing steps and results of the workflow setup is as follows: materials and 

methods are briefly reviewed in the data and the workflow steps sections respectively. 

After that, the results of the workflow test in a real-world phenological case study are 

presented and discussed in the results and discussion section. 

2. Data 

Volunteered phenological observations were used to test the proposed workflow. We 

used a dataset with the location, the year and the day of the year of the first flower of 

cloned lilacs. The geographic extent of this dataset covers the contiguous United States 

and the observations are available from 1956 to 2013. This dataset was obtained from the 

USA national phenology network
1
 database.  

The timing of most phenological events correlates well with climatic parameters. In 

fact, this is the reason why phenology is becoming one of the most popular methods to 

evaluate climate change. Therefore here we use the most detailed set of climatic data for 

the US, namely the DAYMET database
2
. The following cumulative daily climatic 

parameters were calculated to characterize the environmental context conditions in which 

the lilac observations took place: daily surface minimum and maximum temperatures, 

precipitation, humidity, shortwave radiation, snow water equivalent, and daylight. The 

cumulative period stars the first of January of each year and ends the day of the year in 

which the flowering was recorded. Lilac observations done before 1980 were not 

analyzed since this is the first year of the DAYMET database.  

3. The workflow  

The proposed workflow applies a specific sequence of methods and techniques to identify 

inconsistent observations (Fig. 1). Clustering VGI based on the contextual condition in 

which they were collected provides considerable information about the variability that 

one should expect in the VGI dataset. When the contextual information is high-

dimensional, mapping it to a low-dimensional space facilitates both the clustering and the 

subsequent visualization of the results. Once the observations are assigned to clusters, 

inconsistency is identified by looking at the outliers present in each cluster. 

                                                 
1
 https://www.usanpn.org/results/data 

2
 http://daymet.ornl.gov/dataaccess.html 
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Figure 1. The main steps of the workflow for identifying inconsistent VGI. 

 
First, dimensionality reduction of the contextual geoinformation is needed since we 

have a large number of contextual variables. We selected the t-distributed stochastic 

neighbor embedding or t-SNE (Van der Maaten and Hinton, 2008) to reduce the 

dimensionality of the contextual geoinformation while its local structure is kept. This 

means that similar objects are mapped to nearby points in the low-dimensional space. The 

chosen number of final dimensions depends on the complexity of the data. Choosing two 

dimensions could facilitate the visualization of the clusters in this study. The inclusion of 

the t-SNE improved the workflow as it allowed the use of a wide range of the contextual 

geoinformation to create clusters with similar context conditions. 

Model-based clustering using normal mixture models (Banfield and Raftery, 1993, 

Fraley and Raftery, 2002) is used in the proposed workflow as it address following 

questions in an automated fashion: 1) how many clusters there are 2) what is the shape 

and size of clusters 3) how should outliers be handled and which distribution model 

should be used. The automated identification of cluster characteristics is realized by 

sequentially fitting several mixture models to the transformed contextual geoinformation 

and selecting the one that maximizes model selection criterion, which here is the 

Bayesian Information Criterion (Biernacki et al., 2000). However, the efficiency of the 

selected clustering method might be negatively affected by the dimensionality of the 

input data, i.e. the number of contextual variables selected to characterize the context 

condition. This justifies the use of t-SNE method in the preceding step. 

The Tukey boxplot (Frigge et al., 1989), a hybrid method that displays variation and 

outliers in numerical data, is proposed as the final step of the workflow to detect the 

intra-cluster outliers, i.e. inconsistent observations. Keeping in mind that VGI collected 

from similar context should follow a normal distribution; boxplots of the VGI belonging 

to each cluster can quickly detect intra-cluster outliers, an observation with values 

higher/lower than 1.5 the interquartile range, i.e. distance between third quantile and first 

quantile of the data in each cluster. 

4. Results and discussion 

The results of model-based clustering and their corresponding uncertainty are shown in 

Fig. 2. Notice that the clustering was performed on a two dimensional data created by 

using the t-SNE method. The clustering identified both well-isolated groups and “fuzzy” 

groups. Clustering uncertainty is high where the clusters are close to each other and 

mixed. This uncertainty was calculated as the complementary value of the probability of 

the most likely group for each observation. Observations with an uncertainty higher than 

0.5 were ignored from the further step as they could be either an inconsistent or a mis-

clustered observation. 
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Figure 2. The model-based clustering results in which transformed contextual 

geoinformation are clustered in different colors (left). The corresponding uncertainty in 

clustering plot (right). 

 

Fig. 3 shows the geographic distributions of the volunteered observations belonging to 

each of the 15 clusters identified in Fig. 2. Clusters 4 and 6 contain some spread in the 

geographic distribution of the observations while the rest of the clusters tend to be 

compact. Some clusters have a geographical overlap such as clusters 3,11,13 and 14. 

Such overlaps point out a variety of contextual conditions might exist in northeast of the 

US. 

 

 
 

Figure 3. The geographical distribution of clusters through the study area. 

 

The intra-cluster outliers (hollow circles in Fig. 4)  founded as inconsistent 

volunteered observations are presented in Fig. 5. They account for around 3% (69 out of 

2296) of the all volunteered observations. They were mostly concentrated in northeast of 

the US, where three different climatic zones are located close to each other: humid 

subtropical and humid continental with warm and cool summer. 
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Figure 4. Intra-cluster boxplots of the day of the year that cloned lilac started flowering. 

 

 

 
 

Figure 5. Plot of the inconsistent volunteered observations though study area: The red 

stars show unusually early while blue ones show unusually late inconsistent observations. 

The labels show the difference between the day of the year recorded by volunteers and 

the median of the cluster they belong to. 

 

Double checking with reference geoinformation collected by the US national 

phenology network, identified inconsistencies could be linked to backyard gardening 

effects or volunteer records on a weekend or holiday (Fig. 6). This means that 

inconsistent VGI are not essentially wrong observations. However, they should carefully 

be used to prevent unduly biases in subsequent scientific studies.  
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Figure 6. An unusual early first flower at northwest of the Indiana State on 30

th
 March 

(left). An unusual late first flower at east of the New York State on 8
th

 June (right). 

 

In conclusion, we believe that other VGI initiatives can use our workflow to identify 

inconsistent observation in phenology but also in other environmental applications. The 

workflow is based on machine power which clearly makes inconsistency identification 

less costly and time-consuming. However, the efficiency of the workflow needs to be 

evaluated in other real-world case studies, which is considered as the perspective of this 

study.  
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