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Abstract 

The nature of interactions between individuals of an animal population is a fundamental 

aspect of a species' behavioural ecology and information on the frequency and duration of 

these interactions is vital to understanding mating and territorial behaviour, resource use, 

and infectious disease epidemiology. There have been two main ways to quantify 

interactions in wildlife studies: 'static interactions', which involve some quantification of 

home range overlap (and are therefore just spatial), and 'dynamic interactions' which are 

defined as occurring within a spatial and temporal threshold. Dynamic interactions can 

provide information on possible attraction and avoidance of individuals that are in the 

same area at the same time and are far more useful for understanding how two 

individuals interact in the context of disease transmission and behavioural ecology, but 

they are more problematic to measure. Few studies have tested different dynamic 

interaction metrics using the same data, and when they have been compared, the results 

have been quite variable (Miller, 2012, Long and Nelson, 2014). Most currently used 

dynamic interaction metrics lack a benchmarking framework that deals with null models 

or expected values for neutral interaction in order to facilitate more meaningful 

interpretation of their values (e.g., what are the values for each metric that would be 

associated with social behaviors be consistent with 'attraction,'  'repulsion,' or 'no 

interaction'?). The research presented here borrows from the null model approach 

commonly used in community ecology to compare observed (empirical) dynamic 

interaction values with distributions of expected values generated by using different null 

models. 

 

Keywords: movement pattern analysis, spatiotemporal, null model, interaction, random 

walk. 

 

1. Introduction 

High quality movement data are increasingly available for many different types of 

animals, facilitating unprecedented access to insights about how movement can be used 

to study behaviors. In addition to increased spatial accuracy and temporal resolution of 

the locational information, improvements are being made to ‘biologgers’ that enable the 

collection of ancillary behavioral and physiological information as well (Rutz and Hays 

2009). ‘Computational movement analysis’ (CMA) has recently emerged as an extension 

of time-geography that focuses on the development and application of computational 

techniques for collecting, managing, and analyzing movement data in order to better 

understand the processes that are associated with them (Gudmundssen et al. 2012). 

Although a relatively large body of research in biology and ecology has developed on 
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animal movement due to the long-standing necessity of using tracking technologies to 

study them, CMA applications have focused more often on human movement, such as 

using travel diaries to better understand mobility and space use and studying potential 

exposures to environmental hazards. Concurrently, ‘movement ecology’ has become a 

rapidly growing subfield in ecology focused on understanding the “causes, mechanisms, 

and spatiotemporal patterns of (organismal) movement and their role in various 

ecological and evolutionary processes” (Nathan et al. 2008: 19052). In spite of the fact 

that both subfields deal with similar issues related to spatiotemporal representation and 

analysis, scale, uncertainty, and inferring process from pattern, there has been 

surprisingly little cross-over between them. 

The ability to measure interactions, or the degree to which the movement of an 

individual is dependent upon that of other individuals, is crucial to understanding 

behaviors related to territoriality and mating as well as resource use and infectious 

epizootic diseases. ‘Dynamic interaction’  (Doncaster 1990) between two individuals 

occurs within a spatial and temporal threshold and can provide information on possible 

attraction and avoidance of individuals that are in the same area at the same time, which 

is important in the context of investigating disease transmission and spatial ecology. 

In spite of the importance of measuring dynamic interactions, they have not been a 

main research focus in movement analysis. Few studies have tested different dynamic 

interaction metrics using the same data, and when they have been compared, the results 

have been quite incongruous (Long et al. 2014; Miller, 2012). This research borrows 

from the null model approach commonly used in community ecology to compare 

observed (empirical) dynamic interaction values with distributions of expected values 

generated by different null models.  

2. Quantifying animal interactions 

Many of these interaction metrics were originally developed in wildlife and behavioural 

ecology for use with direct observations of individuals (point-based) where observations 

were classified as one of four types: individual α and β together; α without β; β without α; 

or neither α nor β (see Cairns and Schwager, 1987 for review). Most of the interaction 

metrics described below have extended this concept by defining “together” either in 

terms of home range overlap or a spatio-temporal threshold.      

While a few path-based dynamic interaction metrics have been introduced recently 

(see Long et al. 2014),  path-based methods do not address relative spatial location and 

are more appropriate for measuring path similarity than the degree to which individuals 

encounter each other. As this work is primarily focused on measuring spatially proximal 

interaction, I focus on point-based metrics. Table 1 briefly describes the dynamic 

interaction metrics that are tested here, along with an indication as to whether they 

explicitly incorporate an expected value in their calculation. 

The dynamic interaction metrics (DI metrics) listed in table 1 are important ways to 

measure level of interaction between two individuals. However, each of them has 

sufficient limitations that prevent robust and meaningful analysis of interactions. Point-

based interaction metrics often require the calculation or selection of highly subjective 

factors such as home ranges or a distance threshold (dc). Most importantly, these metrics 

lack a benchmarking framework that deals with null models or expected values for 

neutral interaction in order to facilitate more meaningful interpretation of their values. 
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The research presented here borrows from the null model approach commonly used in 

community ecology to compare observed (empirical) dynamic interaction values with 

distributions of expected values generated by using different null models in order to 

interpret the interaction metrics, as well as limitations associated with their current 

implementation.  

 

Table 1: Point-based dynamic interaction metrics tested here. 

DI 

metric 

What is 

“interaction”? 

Input Expected 

values? 

Interpretation 

Prox Ratio of STαβ fixes 

to simultaneous 

(Tαβ) fixes.  

tc and dc --  Ranges from 0 (avoidance) to 

1 (attraction); 

 No significance test 

Risk-

ratio 

Proportion of Tαβ 

fixes that are 

within dc to 

proportion of non-

simultaneous 

(unmatched) fixes 

that are within dc  

tc and dc Non-

simultaneous 

fixes (n
2
-n) 

 RR< 1: avoidance 

 RR> 1: attraction 

 Uses 2x2 contingency table 

from Doncaster test, which 

can be assessed with 𝜒2
 test 

Lixn Relative use of OZ 

by A and B 

together (Tαβ fixes) 

compared to their 

respective Tαβ fixes 

outside of OZ.  

tc, HRA, 

HRB, 

and OZ 

Proportion of 

OZ to the 

unshared 

portion of 

HRA and HRB 

 Lixn> 0: attraction 

 Lixn< 0: avoidance 

 𝜒2 test 

Cs Compares the 

mean distance 

between Tαβ fixes 

and mean distance 

between non-

simultaneous fixes 

tc Non-

simultaneous 

fixes (n
2
-n) 

 Ranges from -1 (avoidance) to 

1 (attraction) 

 Separate paired signed-rank 

tests for attraction and 

avoidance 

HAI Compares STαβ 

fixes to number of 

times A is in OZ 

without B and B is 

in OZ without A 

tc, dc 

and OZ 

--  Ranges from 0 (avoidance) to 

1 (attraction) 

 No significance test 

IAB Compares mean 

distance between 

Tαβ fixes in OZ to 

mean distance 

between 

temporally shifted 

fixes in OZ.  

tc, dc 

and OZ 

Wrapping the 

time series of 

serial locations 

for a series of 

temporal shifts  

 Pseudo-p value for each case 

of attraction and avoidance 

calculated by comparing 

observed to expected values. 
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3. Testing null models for interpreting dynamic interactions 

Using GPS collar data from five brown hyena dyads in Northern Botswana (see Miller 

2012) this research explores the use of four different types of null models with which to 

compare the existing dynamic interaction metrics:   

 

 Random dates-  refers to methods that involve using coordinate values of actual 

locations, but randomly shuffling them or measuring interactions for pairs of 

coordinates that did not actually occur at the same time.; 

 Rotated trajectories-involves randomly rotating and shifting actual movement 

trajectories so that a path is maintained but it is located randomly in the study 

area;  

 Correlated random walk- involves simulating trajectories that are parametric, but 

include ‘persistence’ by specifying a turn angle concentration and a step length 

parameter; 

 Bivariate Brownian movement- involves simulating a purely random trajectory 

that has only a dispersion parameter that is empirically estimated. 

 

32 “null” trajectories are generated for each of the ten hyenas from each of the four 

null models, and the subsequent pairing up of 32 x 32 trajectories for each dyad results in 

1024 unique pairs of null trajectories for which each of the six dynamic interaction 

metrics will be calculated. Dynamic interaction metrics are interpreted as representing 

attraction, avoidance, or no interaction by comparing the observed value to the 

distribution of expected values generated from the four null models.  

Results indicate that these widely used dynamic interaction metrics are quite 

incongruous in terms of the type and degree of interactions that they measure, both across 

dyad, null model, and DI metric. Purely distance based DI metrics such as Cs performed 

poorly when compared using null models that were not constrained to the minimum 

bounding rectangle. LIXN was susceptible to both type I and type II errors. The null model 

approach greatly enhanced the ability to interpret DI metrics that did not involve an 

inherent significance test such as HAI. In general, these results suggest a need for 

developing new DI metrics or improving the ability to interpret existing ones, as the 

ability to understand how individuals interact has important implications for 

understanding the spread of disease as well as behavioural ecology for less observable 

individuals. 
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