
187 

 

Simulating the effects of migration on the uncertainty of 
species’ range shifts 

 

P. Holloway
1
, J.A. Miller

1
, S. Gillings

2
 

 
1Department of Geography and the Environment, University of Texas at Austin, 305 E 23rd Street, CLA, Austin, TX 78712, USA 

Telephone: (+1) 512 232 7336 

Email: paul_holloway@utexas.edu 

Email: jennifer.miller@austin.utexas.edu  
 

2British Trust for Ornithology (BTO), The Nunnery, Thetford, Norfolk, IP24 2PU, UK 

Telephone: (+44) 1842 750 050 
Email: simon.gillings@bto.org 

 

Abstract 

Species distribution models (SDMs) are one of the most important GIScience research 

areas in biogeography and they are now the primary method used to study the effects of 

climate change on species distributions and ranges. We have identified 20 methods of 

incorporating migration alongside SDM to predict range shifts, and assess them for their 

accuracy in predicting future distributions, as well as the uncertainty between predictions. 

Ensemble models (generated by combining multiple projection outcomes) were created 

for each species, and a new index was developed to quantify uncertainty among the 

projections. Values ranged from 0.699 (large areas of disagreement and high uncertainty) 

to 0.999 (large areas of agreement and low uncertainty). This index will allow researchers 

to quickly identify high or low uncertainty amongst projection results from migration 

methods and discuss future range shifts.  
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1. Introduction  

Species distribution models (SDMs) are one of the most important GIScience research 

areas in biogeography and they are now the primary method used to study the effects of 

climate change on species distributions and ranges. However, the extrapolation of 

species-environment relationships involves several conceptual and methodological issues 

that introduce uncertainty, such as novel environmental combinations, new species 

interactions, unpredictable feedbacks related to land cover change, as well as the 

migration capacity of the species.  

Soberón and Peterson (2005) introduced the BAM framework to identify the three 

main factors that determine species distributions: Biotic, Abiotic and Movement. Biotic 

factors represent interactions with other species (i.e. competition, predation), abiotic 

factors represent the physiological tolerances of a species (i.e. temperature, precipitation) 

and movement refers to the area that has been or will be accessible to a species within a 

certain timeframe. While the importance of all three factors (abiotic, biotic and 

movement) is well recognized in the SDM discipline, the majority of SDM studies have 

not found a way to regularly incorporate movement in an SDM framework, and those that 

do often rely on an overly simplistic conceptualizations of movement (e.g. full dispersal 

or no dispersal) (Franklin 2010).  
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When migration has been implemented in SDM research, it has often taken one of two 

extreme approaches: unlimited or limited. These two approaches overly simplify 

movement, and as a result of their extreme variation, greatly increase the uncertainty 

associated with the effects of climate change, for example, Engler and Guisan (2009) 

found a 95% difference in projected distribution between their model of migration and 

these extreme approaches. In SDM research, many efforts have been directed towards 

identifying the uncertainty associated with the various model-building phases, such as the 

implementation of a statistical framework (Elith & Graham 2009) or the selection of 

absence or ‘background’ data (Barbet-Massin et al. 2012). With the variation in results 

due to migration methods currently used in SDM so substantial, research needs to be 

directed towards quantifying this (Miller & Holloway in press). 

One of the challenges associated with comparing methods for projecting the effects of 

climate change on species’ ranges has been the lack of appropriate data with which to 

validate the results. Datasets of species ranges that span temporal scales meaningful for 

assessing climate change impacts are becoming increasingly available. The British Trust 

for Ornithology (BTO) has led the production of bird atlases offering complete coverage 

of Great Britain at a 10km resolution in three periods spanning 40 years, in 1968–72, 

1988–91 and 2007–11. These datasets can be used to test the accuracy of the migration 

methods implemented in SDM research, as we can take the earliest known range and 

project the species-environment relationships alongside migration to the latest time 

period, and compare the results with the current distribution. This will provide 

researchers with a framework to compare the differences between each individual 

migration method currently implemented, for a variety of species and spatiotemporal 

scales and will subsequently allow discussions about future range, extinction rates and 

migration patterns to be made with a better understanding of the inherent uncertainty.  

2. Data and Methods  

Distribution data for 50 breeding bird species were extracted from bird atlases for 1988–

91 (Gibbons et al. 1993) and 2007–11 (Balmer et al. 2013). The species were selected to 

span a range of attributes such as their ubiquity, migration strategy and whether they 

were native or introduced. Corresponding climate data for the 12 UKCP09 annual 

variables was averaged to match the temporal range of the atlas data. Land cover data for 

the same periods (LCMGB 1990 and LCM2007) was obtained from the Centre of 

Ecology and Hydrology and elevation data from the USGS for bird analysis. 

Three commonly used statistical methods known for generating accurate results were 

used to project species’ ranges, Generalized Linear Models (GLM), MaxEnt, and 

Random Forests (RF). Each of these methods deals with extrapolation (predicting in 

future, and sometimes novel or non-analogue, climate conditions) differently. A total of 

20 migration methods (see table 1) were coupled with the three SDM projections for both 

birds and plants (table 1). Unlimited migration is the ‘best case’ scenario, and assumes 

that all new suitable habitat is accessible. No migration is the ‘worst case’ scenario, 

assuming that only currently suitable habitat is available in future projections. All 

migration methods were implemented using original R functions written by the author in 

R 3.1.2 (R Development Core Team 2008), with the exception of the probabilistic 

dispersal kernels which use the kernel function in the MigClim package (Engler et al. 

2013).  
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Table 1. Summary of the migration methods used. 
 

Method Description Method # 
No migration Only suitable habitat that matches current range can become occupied 1 

Limited migration (rook’s) Only overlapping suitable habitat can become occupied, using rook’s connectivity 2 

Limited migration (Queen’s) Only overlapping suitable habitat can become occupied, using Queens’s connectivity 3 

Fixed rate 1 step (arithmetic mean) Fixed migration based on arithmetic mean recorded dispersal distance between earliest known 

distribution and latest known distribution  

4 

Fixed rate 1 step (geometric mean) Fixed migration based on geometric mean recorded dispersal distance between earliest known 

distribution and latest known distribution  

5 

Fixed rate 2 steps (arithmetic mean) Fixed migration based on arithmetic mean recorded dispersal distance between earliest known 

distribution, to an intermediately predicted distribution, and latest known distribution  

6 

Fixed rate 2 steps (arithmetic mean) Fixed migration based on geometric mean recorded dispersal distance between earliest known 

distribution, to an intermediately predicted distribution, and latest known distribution  

7 

Discrete dispersal kernel (Gaussian arithmetic) Probability of dispersal drawn from a Gaussian distribution and the maximum taken as the fixed rate. 

Based on arithmetic statistics  

8 

Discrete dispersal kernel (Gaussian geometric) Probability of dispersal drawn from a Gaussian distribution and the maximum taken as the fixed rate. 

Based on geometric statistics 

9 

Discrete dispersal kernel (inverse exponential 

arithmetic) 

Probability of dispersal drawn from an inverse exponential distribution and the maximum taken as the 

fixed rate. Based on arithmetic statistics 

10 

Discrete dispersal kernel (inverse exponential 

geometric) 

Probability of dispersal drawn from an inverse exponential distribution and the maximum taken as the 

fixed rate. Based on geometric mean. 

11 

Discrete dispersal kernel (Cauchy arithmetic) Probability of dispersal drawn from a Cauchy distribution and the maximum taken as the fixed rate. 

Based on arithmetic statistics 

12 

Discrete dispersal kernel (Cauchy geometric) Probability of dispersal drawn from a Cauchy distribution and the maximum taken as the fixed rate. 

Based on geometric mean. 

13 

Probabilistic dispersal kernel (Gaussian 

arithmetic) 

Assign each grid a conditional probability from a Gaussian distribution to be colonized and generate 

presences based on these values. Arithmetic statistics 

14 

Probabilistic dispersal kernel (Gaussian 

geometric) 

Assign each grid a conditional probability from a Gaussian distribution to be colonized and generate 

presences based on these values. Geometric statistics 

15 

Probabilistic dispersal kernel (inverse 

exponential arithmetic) 

Assign each grid a conditional probability from an inverse exponential distribution to be colonized and 

generate presences based on these values. Arithmetic statistics 

16 

Probabilistic dispersal kernel (inverse 

exponential geometric) 

Assign each grid a conditional probability from an inverse exponential distribution to be colonized and 

generate presences based on these values. Geometric statistics 

17 

Probabilistic dispersal kernel (Cauchy arithmetic) Assign each grid a conditional probability from a Cauchy distribution to be colonized and generate 

presences based on these values. Arithmetic statistics 

18 

Probabilistic dispersal kernel (Cauchy geometric) Assign each grid a conditional probability from a Cauchy distribution to be colonized and generate 

presences based on these values. Geometric statistics 

19 

Unlimited All suitable habitat can become occupied 20 
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Figure 1. Sensitivity scores for the 20 migration methods (n.b. 8-13 are consolidated under 8 due to no variation), for the three SDM 

methods and four breeding groups. 
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Figure 2. Distribution maps of the Cetti’s warbler with MaxEnt, a) 1990 observed distribution, b) 

2010 observed distribution, c) unlimited migration, d) no migration, e) ensemble model, f) fixed 

rate 1 step (arithmetic), g) fixed rate 2 steps (arithmetic), h) Gaussian kernel (MigClim 

arithmetic), i) exponential (Migclim arithmetic) and j) Cauchy (MigClim arithmetic) 



192 

 

Species Ensemble  

Richness 

Ensemble 

Index 

  Species Ensemble 

Richness 

Ensemble 

Index 

Blackcap 

 3 

 

0.999 

  Kingfisher 

6 0.985 

Barn Owl 

5 

 

0.981 

  Lesser Black-

backed Gull 4 0.985 

Barnacle Goose 

 13 

 

0.734 

  Long-eared Owl 

6 0.956 

Common 

Buzzard 7 

 

0.971 

  Little Grebe 

4 0.979 

Cormorant 

9 

 

0.910 

  Little Ringed 

Plover 10 0.921 

Canada Goose 

 4 

 

0.990 

  Mandarin Duck 

11 0.929 

Common Tern 

 6 

 

0.964 

  Nuthatch 

5 0.990 

Cetti’s Warbler 

 18 

 

0.770 

  Nightjar 

8 0.912 

Wood Duck 

 17 

 

0.699 

  Great Skua 

8 0.892 

Dartford Warbler 

15 

 

0.705 

  Oystercatcher 

 5 0.992 

Common Eider 

 5 

 

0.985 

  Osprey 

9 0.815 

Egyptian Goose 

 15 

 

0.773 

  Peregrine Falcon 

4 0.982 

Firecrest 

 15 

 

0.787 

  Quail 

4 0.970 

Green 

Woodpecker 4 

 

0.991 

  Ring-necked 

Parakeet 14 0.768 

Gadwall 

11 

 

0.802 

  Red-legged 

Partridge 7 0.863 

Goosander 

 4 

 

0.982 

  Raven 

5 0.988 

Grasshopper 

Warbler 5 

 

0.970 

  Reed Warbler 

4 0.983 

Goshawk 

 10 

 

0.774 

  Stonechat 

11 0.977 

Greylag Goose 

 5 

 

0.966 

  Siskin 

8 0.984 

Grey Wagtail 

 5 

 

0.994 

  Sand Martin 

4 0.985 

Great Spotted 

Woodpecker 3 

 

0.997 

  Shelduck 

8 0.945 

Garganey 

 8 

 

0.864 

  Tree Sparrow 

5 0.988 

Grey Heron 

 3 

 

0.996 

  Water Rail 

9 0.947 

Herring Gull 

 6 

 

0.984 

  Woodlark 

15 0.768 

Hobby 

 6 

 

0.944 

  Wigeon 

9 0.938 

 

Table 2: Ensemble statistics for each bird species across the whole study area 

 



193 

 

3. Results 

The most notable difference in accuracy measures is for sensitivity, the proportion of 

correctly predicted presences (Figure 1), and occurs for MaxEnt models of the introduced 

breeders. The two most extreme migration methods (#1 and #20) bound the other 

methods, with the other methods changing quite substantially in their sensitivity scores. 

The two limited migration methods (#2 and #3) result in higher sensitivity than many of 

the other methods. The six iterations of the discrete dispersal kernel (#8 to #13) are 

consolidated under #8, as there were no significant differences in accuracy scores for 

these methods when all species were considered together. These discrete dispersal kernels 

produced results identical to unlimited migration due to large values of the maximum 

value drawn from fat-tailed kernels. Our results suggest that this method is possibly not 

the most realistic method of simulating migration of birds as it assumes that every 

location between the maximum distance drawn is equally accessible.  

Figure 2 shows predictions from a number of the migration methods for the Cetti’s 

warbler coupled with MaxEnt, as well as an ensemble model (the number of times an 

observation is predicted present by all 20 migration methods). Unlimited migration 

(Figure 2c) appears to over-predict the distribution of the Cetti’s warbler into northern 

England and Scotland, as well as reduce the fragmentation in the center of the 

distribution. Conversely, no migration (Figure 4d) seriously under-predicts the 

distribution. This figure also highlights the differences between one- and two-step fixed 

rates (Figure 2f-g). The difference in area projected differs by 1940km
2 

between these 

two methods. This is a large difference in projected future ranges for a relatively scarce 

species in Great Britain and could make up a considerable amount of its perceived range. 

This could result in contradicting interpretations of whether this species is considered as 

part of a stable population or a threatened population.  

As it is not possible to show an ensemble map for all the species, in order to 

effectively interpret the uncertainty associated with the ensemble maps, we developed an 

ensemble index (D) which ranks full agreement across every observation as 1, and no 

agreement across every observation as 0: 

 

𝐷 =  
(

𝐸−min(𝐸)

max(𝐸)−min(𝐸)
)

𝑁
                                                         (1) 

 

where 𝑁 is the total number of presence observations in the output, and  𝐸 is defined 

as: 

 

𝐸 = (∑
e

𝑚
)                                                               (2) 

 

where e is the ensemble score, and m is the total number of migration models used to 

generate the ensemble. 

Table 2 identifies the ensemble index for all 50 bird species, as well as the total 

number of different ensemble scores (ensemble richness). The lowest score is 0.699 for 

the wood duck, an introduced breeder, and the second lowest is 0.705 for the Dartford 

warbler, a resident breeder.  The lower the ensemble index, the higher the uncertainty of 

the projections. Several species have ensemble index scores over 0.99, suggesting very 
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high number of observations with full agreement. The higher total number of ensemble 

scores across an observation is obviously an indicator for a high ensemble index, but this 

is not always the case. Both Little ringed plover and Mandarin duck have an ensemble 

score of >0.9, but a total number of ensemble scores greater than 10. There are no really 

low index scores for any of the 50 birds. In part this could be due to a relatively low 

uncertainty surrounding these methods, although more likely this is due to the inclusion 

of the six discrete dispersal kernel methods which when combined suggest full agreement 

that may be a result of their specification. If these were removed, we may observe lower 

scores.  
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