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Abstract 

Areal interpolation is the process of transferring data collected over source zones to target 

zones. One of the applications of areal interpolation is to construct temporally consistent 

areal units for comparing socioeconomic data over time. Dasymetric modeling is the 

process of employing ancillary data to spatially refine the distribution of socioeconomic 

variables. In this paper, three areal interpolation methods, namely areal weighting (AW), 

target density weighting (TDW) and pycnophylactic (PM), with and without spatial 

refinement, are used to interpolate census tract populations in 2000 (source zones) to 

census tract boundaries in 2010 (target zones). The spatial refinement is performed using 

residential parcels. The study area is Hennepin County, Minnesota. Accuracy assessment 

is based on the interpolated population of each target zone and its benchmark population 

resulting from aggregating the population values of census blocks within it. According to 

accuracy comparisons, spatial refinement has potentials to improve areal interpolation 

results. However, the improvement level depends on the employed areal interpolation 

method. 
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1. Introduction  

Areal interpolation techniques such as Areal Weighting (AW) (Goodchild and Lam 

1980), pycnophylactic modeling (PM) (Tobler 1979), and Target Density Weighting 

(TDW) (Schroeder 2007) have been used for constructing temporally consistent 

enumeration units in cases where these units are incompatible. Dasymetric modeling is a 

special type of areal interpolation that employs ancillary data to spatially refine the 

distribution of the variable of interest (Wright 1936, Mennis 2009), allowing the 

development of advanced small area estimation techniques (Kim and Yao 2010, Leyk et 

al. 2013). Dasymetric refinement prior to areal interpolation for temporal analysis can 

improve the precision and accuracy of population change estimates. Holt et al. (2004) 

show that refining census units using developed land cover classes at one point in time 

improves areal weighting results.  

Existing national land cover data is limited in rural areas because its coarse resolution 

tends to underestimate residential areas (Leyk et al. 2014). In this study, parcel data are 

tested to depict populated places more reliably. Population estimates from the U.S. 
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Decennial Census for 2000 and 2010 are dasymetrically refined using residential parcels 

prior to areal interpolation for temporal analysis.  Each of three areal interpolation 

methods are run with and without refinement to interpolate census tract populations in 

2000 to census tract boundaries for 2010, and estimation errors are assessed. 

2. Study Area, Data and Preprocessing Steps 

Hennepin County, Minnesota (fig. 1) contains dense urban places in the east and sparsely 

populated rural portions in the west, making it an ideal area to evaluate methods 

performance under different conditions.  

 

 
Figure 1. The study area.  

 

Changes in census tract boundaries between 2000 and 2010 were divided into 

unchanged tracts (less than 900 m
2
), tracts that changed slightly (more than 900 m

2
 but 

less than 45,000 m
2
), and those that changed significantly (more than 45,000 m

2
). These 

thresholds allow for differentiation between changes caused by improved precision in the 

2010 TIGER files and ‘real’ changes in boundaries at two different levels. Of the 298 

study area tracts in 2010, 129 were categorized as slightly changed from 2000 and 52 as 

significantly changed.  

All parcel types relating to residential use were selected. The most important attribute 

in this parcel dataset was the year built, which was used to create distributions of 
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residential parcels with buildings built before 2000 and buildings built before 2010. To 

validate, Census block data from 2000 were aggregated to tracts and compared with the 

interpolated tract values to calculate error measures. 

3. Methods 

3.1. Areal Weighting 

AW estimates source population in target zone boundaries based on the overlapping area 

between source and target zones (i.e., atoms). The underlying assumption is that 

population is uniformly distributed within a source zone (equation 1):                                                                 

𝑝𝑜𝑝𝑠𝑡 = (
𝐴𝑠𝑡

𝐴𝑠
) × 𝑝𝑜𝑝𝑠   (1) 

Ast is the atom area, As is the source zone area, pops is the source zone population, and 

popst is the atom population. The population of target zone t is calculated by summing the 

population counts of all the atoms within it. 

In refined AW, population is assumed to be homogenously distributed within the 

residential portion of a source tract. Accordingly, all area elements in equation 1 are 

refined into residential areas. Fig. 2 illustrates how spatial refinement modifies areas. 

 

 
Figure 2. Residential parcel areas are less than tract areas, and this modifies areal 

interpolation results. 

 



252 

 

3.2. Target Density Weighting 

TDW is based on two assumptions: First, within a source zone, the spatial distribution of 

the variable of interest Y among atoms is proportionally the same as the distribution of an 

ancillary variable Z. Second, the density of Z in any atom equals the density of Z in the 

corresponding target zone (equation 2). 
𝑧𝑠𝑡

𝐴𝑠𝑡
=

𝑧𝑡

𝐴𝑡
 

    (2)  

zst and zt are values of Z for atom st and target zone t, respectively. In this study, Z is 

the population distribution in 2010, and the variable of interest Y is the population 

distribution in 2000 to calculate: 

𝑦𝑡 = ∑ 𝑦𝑠𝑡 = ∑

𝐴𝑠𝑡

𝐴𝑡
× 𝑧𝑡

∑
𝐴𝑠𝜏

𝐴𝜏
× 𝑧𝜏𝜏

× 𝑦𝑠

𝑠𝑠

 (3) 

In equation 3, 𝑦𝑡, 𝑦𝑠𝑡, and 𝑦𝑠 are the variable of interest for target zone t, atom st, and 

source zone s, respectively. τ is a target zone index, iterating through all target tracts 

intersecting source zone s. 

In refined TDW, only residential portions of source and target zones are used. All area 

elements in the above equations are replaced by residential areas. 

3.3. Pycnophylactic Modeling 

PM assumes a smooth volume-preserving density function avoiding abrupt changes 

across adjacent zones. First, the population of source zones is assigned to a grid of cells 

and adjusted in an iterative process. Once stabilized, cell values are aggregated to target 

zones. In contrast, refined PM assigns population to each residential cell of a source zone 

and then creates a smooth surface based on the residential cells within the local 

neighborhood. 

PM and refined PM are run on a grid with 30 meter resolution using a circular 

neighborhood with a radius of 25 cells (750 meters). The surfaces stabilize after 25 

iterations. 

4. Results 

Tables 1 and 2 show the absolute errors for each interpolation method for all slightly 

changed tracts, and all significantly changed tracts, respectively. In AW, refinement 

results in higher MAE (Mean Absolute Error) and RMSE (Root Mean Square Error) 

measures. However, median absolute errors of refined AW are lower than for unrefined 

AW, indicating that refined AW produces more accurate estimates for target zones below 

the median. 

TDW shows lower errors than AW, indicating that the assumptions underlying TDW 

are more realistic than the AW assumption. Refined TDW produces the most accurate 

estimates overall. Moreover, while refined AW shows inconsistent refinement 

performance across error estimates, refined TDW shows a consistent refinement effect. 

No significant changes in error estimates are observed for refined pycnophylactic 

modeling when compared to the unrefined version. 
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Method MAE Median Absolute Error RMSE 90
th

 Percentile Error 

AW 138 36 321 496 

Refined AW 148 7 402 568 

TDW 101 27 230 236 

Refined TDW 70 6 177 180 

PM 145 33 326 520 

Refined PM 140 28 311 533 

 

Table 1. Absolute error measures of all methods for slightly changed target tracts. 

 

 

Method MAE Median Absolute Error RMSE 90
th

 Percentile Error 

AW 298 97 501 712 

Refined AW 332 22 629 1014 

TDW 207 92 357 537 

Refined TDW 138 22 270 539 

PM 312 113 508 780 

Refined PM 303 114 485 801 

 

Table 2. Absolute error measures of all methods for significantly changed target tracts. 

 

The maps in fig. 3 show the spatial distribution of absolute errors of the methods 

within the study area. For refined maps, the errors pertain to residential areas, and are 

visualized over tracts for a better comparison. The maps show that refined AW reduces 

smaller but not larger errors in comparison to AW. Refined TDW generally shows fewer 

tracts with medium to high errors than TDW. PM results are mixed and difficult to 

interpret. 
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Figure 3. The absolute error (absolute differences between estimated and measured 

population) maps of the methods at the 2010 tract level. 

 

5. Discussion and Future Research 

Refined TDW provides consistent improvement, mainly because the two underlying 

assumptions of this method result in more robust results for this short period of time. The 

PM smooth density function may have become less reliable after refinement, but there is 

potential to improve this method through parameter adjustment and processing. Future 

research will include residential unit types (e.g., multi-unit or single family) and 

additional ancillary data to further improve temporal analysis of spatially consistent 

demographic small area estimates.  
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