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Abstract  

There is evidence of an increase of tick bites and Lyme disease in the Netherlands since 

1994. Scientists of different disciplines have demonstrated the tight bond between natural 

conditions and the abundance of ticks in forests. However, traditional statistical models 

are too restrictive to model tick dynamics, as they require a significant number of 

predictors. In this work, we combine a tick bite dataset collected by citizens between 

2006-2012, satellite-derived vegetation indices and weather data to advance our 

understanding of the impact of environmental conditions on tick bites reports and assess 

the value of volunteered information to model tick bites dynamics. This data was 

analysed using clustering and frequent pattern mining algorithms. Results show that this 

approach seems promising to identify environmental conditions that may be linked to a 

higher risk to get a tick bite. 

 

Keywords: Spatio-temporal analytics, data-driven science, VGI, public health, citizen 

science. 

 

1. Introduction  

Since 1994 the incidence of tick bites and Lyme disease in humans has increased 

dramatically in the Netherlands (Hofhuis et al. 2015). The cause of this increase remains 

unknown, although a link with growing tick populations in deciduous forests has been 

suggested (Sprong et al. 2012). Modelling the seasonal incidence of tick bites and Lyme 

disease, and identification of high risk areas is complex due to the wide range of factors 

intervening simultaneously. Previous efforts in the field of biology or environmental 

modelling have determined a tight relationship between wildlife, environment, weather 

and tick populations (Medlock et al. 2013). However, for forecasting ticks and Lyme 

disease, traditional statistical models are too restrictive as they typically require a 

significant number of explanatory variables, constraining their applicability (Fink et al. 

2010). 
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To improve the monitoring of tick bites and Lyme disease, Wageningen University 

and the Dutch National Institute for Public Health and the Environment have been 

collecting tick bite reports through the platforms Natuurkalender (NK) and Tekenradar 

(TR) since 2006. Currently, this collection of tick bites contains nearly 35.000 

observations contributed by volunteers. To our knowledge, it is the first Citizen Science 

project in the world to monitor the occurrence of tick bites. 

In this ongoing study we continue the effort of modelling tick dynamics, however, we 

are using data mining algorithms to find clusters and frequent patterns in tick bites as 

reported by citizens. Data mining algorithms are promising in the process of modeling 

tick dynamics, as they focus on finding patterns and correlations without preconceived 

ideas on their manifestation. These algorithms are capable of working with multivariate 

datasets and finding high-dimensional samples similar between them. The aim of this 

study is to determine if using a combination of clustering and pattern mining algorithms, 

with remote sensing products and volunteer information provides enough information for 

a spatiotemporal analysis, capable of determining suitable conditions for the occurrence 

of tick bites and provide additional clues about tick dynamics. 

2. Data  

The tick bites dataset is a crowdsourced collection of point feature observations from the 

period 2006-2014. Each observation contains the tick bite date, the location of the tick 

bite, the (approximated) personal address of the volunteer, the type of environment they 

were in (forest, bushes) and the activity they were carrying out when they got the tick bite 

(camping, gardening).  

Ticks are sensitive to environmental conditions, such as thickness of forest canopy or 

soil moisture at the litter level (Medlock et al. 2013). In the past, tick populations have 

been modeled by combining weather variables with satellite-derived vegetation indices. 

Normalized Difference Vegetation Index (NDVI) has typically been used beyond the 

vegetation scope as a proxy to tick populations (Estrada-Peña 2001). Ticks are also 

sensitive to Enhanced Vegetation Index (EVI) (Estrada-Peña et al. 2011) and recent 

studies suggest that Normalized Difference Water Index (NDWI), which measures the 

water content of vegetation, might outperform NDVI for tick populations modelling 

(Barrios González 2013). All these indices are available in the Google Earth Engine
1
,
2
 

(GEE) platform. GEE is an image processing cloud platform for environmental analysis, 

which aggregates products coming from different sensors, like Moderate-Resolution 

Imaging Spectroradiometer (MODIS). For this study we used NDVI, EVI and NDWI 

indices for the 2006 – 2012 period derived from MCD43A4 MODIS Surface Reflectance 

composites at a 500m spatial resolution and 16-day temporal resolution. 

Apart from these indices we included temperature data from 2006-2012 provided by 

the Royal Netherlands Meteorological Institute (KNMI) in this analysis, as temperature 

determines the start of the questing season or the survival probability through winter 

(Ogden et al. 2006). Weather data for 2013 and 2014 are not yet available and therefore 

this study was carried out for the 2006-2012 period. When these data become available 

the study will be extended. 

                                                 
1
 https://ee-api.appspot.com/  

2
 https://earthengine.google.org/#intro  
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3. Methods  

The tick bites datasets from NK and TR were cleaned, standardized and merged together 

in a single collection of point features. Using GEE we obtained the three vegetation 

indices (NDVI, EVI and NDWI) corresponding to each of the tick bite observations. 

After this, a process of feature engineering was performed to obtain additional features 

for various temperature measures.  We thus obtained 1) the minimum (TMIN) and 

maximum (TMAX) temperatures for the day of the tick bite, 2) the average (AVGK), 

minimum (AVGN) and (AVGX) weekly temperatures and 3) the accumulated 

temperature in the previous winter (ACCW), the accumulated temperature until the date 

of the tick bite (ACCD) and the sum of both accumulations (ACC). 

Once the multidimensional table was built, two data mining techniques were applied 

in parallel to know which environmental conditions are more risky for humans for tick 

bites and evaluate the significance of the features used. First, we clustered the data using 

Self-Organizing Maps (SOM) (Kohonen 1982) to find out the different groups of similar 

observations hidden in data as well as to obtain their main characteristics. Then frequent 

pattern mining with the Apriori algorithm (Agrawal & Srikant 1994) was used to find 

frequent patterns and to relate them with the output of the clustering. This analysis was 

done in Python using: SOMpy
3
 for the clustering and PyFIM

4
 for the frequent patterns.  

4. Preliminary results 

The SOM produced 8 clusters that aggregate a total of 13.875 tick bites observations for 

the period 2006 – 2012. Table 1 depicts the centroid of each cluster. 

 

Table 1. Centroids list for the clusters obtained with SOM. 

 

There are several interesting features in Table 1; here we highlight two of them: 1) the 

low accumulation of previous winter temperature, ACCW, in Clusters 1, 3 and 7 seems 

to have a negative impact on the occurrence of tick bites. This may suggest cold winters 

decrease the survival rate of ticks, causing a lower incidence of tick bites on the next 

year. 2) Cluster 2 has the highest ACCD accumulation, meaning that these tick bites 

occurred in an advanced stage of the year, possibly in line with the late-summer peak 

activity for adult ticks. Fig. 1 shows the geographical projection of the clusters, which 

show a high degree of spatial randomness. However, there is a clear spatial clustering 

around forests (center of the map) and natural recreational areas along the coast.  

                                                 
3
 https://github.com/sevamoo/SOMPY  

4
 http://www.borgelt.net/pyfim.html  

Cluster NDVI EVI NDWI TMIN TMAX AVGN AVGX AVGK ACCW ACCD ACC #OBS 

0 0.40 0.63 0.04 12 23 8 23 8 514 511 1026 2146 

1 0.31 0.57 0.05 4 13 2 14 7 481 573 1055 1134 

2 0.42 0.64 0.03 8 18 5 22 9 460 1253 1714 2057 

3 0.43 0.66 0.03 12 22 10 30 11 424 784 1208 1003 

4 0.47 0.68 0.04 12 22 8 27 10 535 719 1255 2742 

5 0.35 0.59 0.05 5 15 3 22 10 540 975 1516 1216 

6 0.45 0.68 0.03 11 20 8 22 7 539 756 1296 2623 

7 0.38 0.61 0.04 9 20 5 22 9 446 1082 1529 954 
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Clustering techniques do not reveal the most frequent patterns occurring in the data. 

The application of the Apriori algorithm produced more than 3 million frequent patterns, 

ranging from two (most frequent) to eleven features (less frequent). For instance, there 

are 2817 observations with TMAX = 20 and NDWI = 0.1 and only 321 observations with 

NDVI = 0.5, EVI = 0.8,   NDWI = 0.1, ACCD = 440. 

 

 
 

Figure 1. Geographic projection for the observations per cluster.  

Clusters (0-7) are arranged left to right. 

 

In summary, these preliminary results show that the application of clustering and 

frequent pattern mining seem promising to identify environmental conditions linked to a 

higher incidence of tick bites in humans. Mapping the spatio-temporal occurrence of 

these conditions could be used to guide further efforts to mitigate tick bites and to try 

reduce the incidence of Lyme disease. We studied this phenomena at a fine temporal 

scale (daily, weekly), however, the similarity of the results may suggest that further 

research should be performed at a coarser temporal scale (e.g. seasonal) as this might be a 

better way to characterize the locations where tick bites occurred. 
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