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Abstract  

In this paper we investigated the performance of context recognition from moving object 

data collected by imaging and tracking. We employed an optical flow algorithm and 

trajectory clustering techniques to extract movement characteristics of surgical staff from 

video imagery and time-stamped location data collected by an ultrasonic location aware 

system respectively. Then we applied a Support Vector Machine to time-stamped 

location data, optical flow estimates, trajectory clusters, and combinations of these three 

data to examine the intraoperative context recognition rate. Our results showed that the 

integration of both video imagery and location sensor data improves context awareness of 

neurosurgical operations.  
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1. Introduction  

Advances in location sensing and computing technologies enable automatic tracking of 

moving objects at a high level of detail in space and time. Context awareness from such 

moving object data is one of the key research challenges in data mining and ubiquitous 

computing. Activity recognition and situation awareness associated with locations, time, 

and moving objects facilitate the interaction between users and computing system, which 

ultimately supports decision making in applications such as transportation (Andrienko et 

al. 2011), video surveillance (Rougier et al. 2011), and offender monitoring systems 

(Yuan and Nara 2015). In the Operating Room (OR) environment, context awareness 

promotes better patient treatment and higher hospital efficiency; for instance, automatic 

surgical phase recognition supports dynamic scheduling and resource allocations 

(Sutherland et al. 2006), and workflow analysis (Padoy et al. 2012) aids workflow 

optimization and standardization.  

To achieve context recognition of intraoperative activities, various monitoring 

approaches have been proposed: patient’s vital signs (Xiao et al. 2005), instrument 

signals (Padoy et al. 2007), surgeon’s elbow and wrist movements using two video 

cameras (Ohnuma et al. 2006), eye-gaze tracking data (James et al. 2007), and 

standardized free-hand movement by a Kinect sensor (Yoshimitsu et al. 2014). While 

previous research has demonstrated that various sensors can recognize activities, 

workflows, and phases during an operation, most of them ignore the comparative study of 

sensor technologies and their context recognition performances.  
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This paper investigated the performance of context recognition from moving object 

data collected by imaging and tracking. We employed an optical flow algorithm and 

trajectory clustering techniques to extract movement characteristics of surgical staff from 

video imagery and time-stamped location data collected by an ultrasonic location aware 

system respectively. Then we apply a Support Vector Machine to time-stamped location 

data, optical flow estimates, trajectory clusters, and combinations of these three data to 

examine the intraoperative context recognition rate. 

2. Data Collection  

2.1 Video Imagery  

In this study, single channel intraoperative video imagery was recorded. The camera is 

mounted on the wall near the entrance of the operating room to shoot the surgical field 

and staff (Fig. 1). 

 

     
 

Figure 1. Operating room layout (left) and camera view (right). 

2.2 Ultrasonic Location Aware System  

The ultrasonic location aware system (Fig. 2) consists of ultrasonic tags (transmitters), 

receivers, and four control units. The receivers receive ultrasonic pulses emitted from 

multiple tags. Four control units identify each tag’s identification and detect associated 

3D positions in the OR. To estimate a location, the system records the time-of-flight, 

which is the travel time of the signal from transmission to reception. Based on more than 

three time-of-flight results, the system computes 3D position using the trilateration 

method based on robust estimation algorithm known as random sample consensus 

(RANSAC) (Fischler et al. 1981). Table 1 represents the system specification in a typical 

environment. 
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Figure 2. Ultrasonic Location Aware System. 

 

 

Frequency of ultrasound 40KHz 

Position estimation error less than 80mm 

Sampling frequency up to 50 Hz 

Measurement range (Distance) Vertical distance from a reader ≈7m 

Measurement range (Angle) Vertical angle from a reader  ≈100° 

Max number of tags 2048 

 

Table 1. Specification of the ultrasonic location aware system 

3. Methods  

3.1 Tag Movements  

We installed the ultrasonic location aware system in an OR at the Tokyo Women’s 

Medical University (TWMU), Tokyo, Japan. The room is 5.8m (Width) x 4.8m (Depth) x 

2.9m (Height) in size (Fig. 2). We deployed 33 ultrasonic receivers on the ceiling and set 

four control units on the wall nearby the room entrance. The wearable ultrasonic tag is 

44mm (Width) x 75mm (Height) x 24mm (Depth) in size, and 40g (Tag: 30g, Battery: 

10g) in weight. For the purpose of minimum disturbance during a surgical operation, a 

single tag was hooked on surgical clothes around the nape of surgical staff’s neck. We 

have also verified that the system does not conflict with other surgical devices including 

MR (Magnetic Resonance) scanners.  

At TWMU, a typical neurosurgical operating team includes surgeons, anesthetists, 

engineers, scrub nurses, and assistant nurses. We have collected tag movement data from 

surgeons, anesthetists, scrub nurses, and assistant nurses and excluded engineers who are 

not continuously present in the OR during neurosurgical operations. In this study, we 

used movement data from 10 neurosurgery cases. 
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3.2 Optical Flow  

Optical flow measures attempt to track the movement of individual features from one 

frame to the next and produce a set of motion vectors that describe the direction and 

magnitude of these movements. The most straight-forward of these algorithms use the 

concept of block matching, which divides a frame into sub-blocks and searches for 

corresponding sub-blocks in the second frame. To search for candidate sub-blocks, block 

matching techniques often rely upon metrics such as the root-mean-square error (RMSE) 

or the sum of absolute differences (SAD). Block matching has been effectively applied to 

many computer vision problems, such as segmenting moving objects (Bradsky and Davis 

2002) and measuring cyclical motion in artery walls (Golemati et al. 2003).  

In this study, we generated frame images using a one-second sampling, which is 

consistent with the sampling frequency of the tag sensor data. Subsequently, we 

calculated optical flow vectors between two consecutive frames. Due to runtime 

performance considerations, we used the Lucas-Kanade method (Lucas and Kanade 

1981), which is optimized for real-time analysis. The magnitudes for each of these 

vectors was summed in order to derive a global measure of activity at a given time. 

Because our camera is stationary, we did not need to account for any movement of the 

camera when calculating optical flow. Note that this global approach diverges from most 

studies that use optical flow to track individual objects; here we are merely concerned 

with aggregate motion within a scene. 

3.3 Trajectory Clustering  

The ultrasonic location aware system collects a set of trajectories from multiple surgical 

staff {Trajectory Set: T = T1, T2, T3, …, Ti, where i denotes the number of surgical staff} 

during a surgical operation. Each trajectory is composed of a sequence of 4-dimensional 

points {{Ti = p1, p2, p3, …, pj, where j denotes the number of points in the trajectory i}, 

{pj = x, y, z, t}}. To extract intraoperative movement characteristics of surgical staff, we 

employed trajectory data mining techniques, which include two procedures, trajectory 

partitioning and trajectory clustering (Nara et al. 2011). The trajectory partitioning 

process partitioned an entire trajectory of each surgical staff into trajectory partitions 

(sub-trajectories). By grouping trajectory partitions for each surgical role, the 

unsupervised clustering process describes surgical events and procedures that have 

similar trajectory patterns. 

For each trajectory partition, we obtain multi-dimensional vectors to characterize the 

partition trajectory. The vector values include total distance (x-y axes), distance between 

start and end nodes (x-y axes), total distance (z axis), and time duration. Then, k-means 

cluster analysis is run based on standardized values of these vectors. To estimate the 

quality of clusters for determining the number of cluster k in k-means automatically, we 

applied the IGRC (Information Gain Ratio for Cluster) index (Yoshida et al. 2006). 

4. Results and Discussion  

Figure 3 shows the relationship between Optical Flow and tag moving distances during 

one neurosurgical operation. The thick red line represents the amount of Optical Flow, 

while the thick black line represents the total tag moving distance. It visually shows a 

strong correlation between two values suggesting that both movements obtained from 

video imagery and the ultrasonic location aware system describe similar movement 
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behaviors. The blue vertical bars explains the amount of moving distance by each role 

(i.e., surgeons, anesthetists, scrub nurses, assistant nurses). 

Figure 4 draws the result of trajectory clustering, which makes groups of similar 

moving and stopping behaviors. For each staff’s role, we quantified moving behaviors 

and created time-sequence vectors by counting the total amount of duration represented 

for each trajectory cluster for a specified time window. In this study, we selected 1 

minute, 5 minutes, and 10 minutes as time windows. In order to compare the context 

recognition rate with the trajectory cluster duration, we used a time-window averaging 

method with the size of 1 minute, 5 minutes, and 10 minutes to create time-sequence 

vectors for Optical Flow and tag moving distances.  

Finally, we applied a Support Vector Machine to tag moving distances, Optical Flow, 

and trajectory clustering, and combinations of these three data to evaluate the 

performance of the intraoperative context recognition using 10-fold cross-validation. Our 

results show that the integration of both video imagery and location sensor data improves 

context awareness of neurosurgical operations particularly when utilizing trajectory 

clustering outcomes (numbers in red). As shown on Figure 3, tag moving distances and 

Optical Flow describe similar moving behaviors; therefore, combining these two data 

does not improve the recognition rate. On the other hand, trajectory clustering is able to 

extract unique movement characteristics from the same data and thus provides a more 

comprehensive description of surgical phases. 

 

 
 

Figure 3. The relationship between Optical Flow and tag movements 
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Figure 4. Trajectory clustering results 

 

 
 without time-elapse with time-elapse 

Moving Window Average 1min 5min 10min 1min 5min 10min 

Optical Flow 40.08 48.37 49.09 67.14 68.57 70.82 

Tag Movement 34.78 36.94 36.42 61.83 60.82 63.38 

Trajectory Cluster 45.71 57.86 58.15 69.46 72.45 74.25 

Optical Flow + Tag Movement 49.56 50.41 50.50 72.44 73.57 72.44 

Optical Flow + Trajectory Cluster 50.30 62.55 65.19 71.24 76.43 77.46 

Tag Movement + Trajectory Cluster  49.02 60.41 60.97 71.28 74.59 73.84 

All 55.43 65.92 67.20 75.05 78.27 77.67 

 

Table 2. Comparison of surgical phase recognition rate (%) 

 

5. Acknowledgements  

This study was partially funded by NEDO (New Energy and Industrial Technology 

Development Organization) through the Intelligent Surgical Instruments Project. We 

thank for Drs. Hiroshi Iseki, Takashi Suzuki, Takashi Maruyama, and Masahiko Tanaka, 

and other staffs of the Tokyo Women’s Medical University for participating in data 

collection. 

 



316 

 

6. References  
Andrienko G, Andrienko N, Heurich M, 2011, An event-based conceptual model for context-aware 

movement analysis. International Journal of Geographical Information Science, 25(9):1347-1370. 

Bradski GR and James WD, 2002, Motion segmentation and pose recognition with motion history 

gradients. Machine Vision and Applications,13(3): 174-84. 

Fischler MA and Bolles RC, 1981, Random sample consensus: a paradigm for model fitting with 

applications to image analysis and automated cartography. Communications of the ACM, 24(6): 381-

395. 

Golemati S, Sassano A, Lever MJ, Bharath AA, Dhanjil S and Nicolaides AN, 2003, Carotid artery wall 

motion estimated from B-mode ultrasound using region tracking and block matching. Ultrasound in 

Medicine & Biology, 29: 387-399. 

James A, Vieira D, Lo B, Darzi A and Yang, GZ, 2007, Eye-gaze driven surgical workflow segmentation. 

In Medical Image Computing and Computer-Assisted Intervention - MICCAI 2007, 110-117. 

Lucas BD and Kanade T, 1981, An iterative image registration technique with an application to stereo 

vision. In IJCAI, 81: 674-679. 

Nara A, Izumi K, Iseki H, Suzuki T, Nambu K and Sakurai Y, 2011, Surgical workflow monitoring based 

on trajectory data mining. In New Frontiers in Artificial Intelligence, 283-291. 

Ohnuma K, Masamune K, Yoshimitsu K, Sadahiro T, Vain J, Fukui Y and Miyawaki F, 2006, Timed-

automata-based model for laparoscopic surgery and intraoperative motion recognition of a surgeon 

as the interface connecting the surgical and the real operating room. International journal for 

computer assisted radiology and surgery, 1: 442-445. 

Padoy N, Blum T, Ahmadi SA, Feussner H, Berger MO and Navab N, 2012, Statistical modeling and 

recognition of surgical workflow. Medical Image Analysis, 16(3): 632-641. 

Padoy N, Blum T, Essa I, Feussner H, Berger MO, Navab N, 2007, A boosted segmentation method for 

surgical workflow analysis. In Medical Image Computing and Computer-Assisted Intervention - 

MICCAI 2007, 102-109. 

Rougier C, Meunier J, St-Arnaud A, Rousseau J, 2011, Robust video surveillance for fall detection based 

on human shape deformation. IEEE Transactions on Circuits and Systems for Video Technology, 

21(5): 611-622. 

Sutherland J, and van den Heuvel WJ, 2006, Towards an intelligent hospital environment: adaptive 

workflow in the OR of the future. In Proceedings of the 39th Annual Hawaii International 

Conference on System Sciences 2006, 100b. 

Xiao Y, Hu P, Hu H, Ho D, Dexter F, Mackenzie CF, Seagull FJ, and Dutton RP, 2005, An algorithm for 

processing vital sign monitoring data to remotely identify operating room occupancy in real-time. 

Anesthesia and Analgesia, 101(3): 823-829. 

Yoshida T, Shoda R and Motoda H, 2006, Graph clustering based on structural similarity of fragments. 

Lecture Notes in Computer Science, 3847: 97-114. 

Yoshimitsu K, Muragaki Y, Maruyama T, Yamato M and Iseki H, 2014, Development and initial clinical 

testing of “OPECT”: An innovative device for fully intangible control of the intraoperative image-

displaying monitor by the surgeon. Neurosurgery, 10: 46-50. 

Yuan M and Nara A, 2015, Space-time analytics of tracks for the understanding of patterns of life. In Kwan 

MP, Richardson D, Wang D and Zhou C (eds), Space-Time Integration in Geography and 

GIScience. Springer Netherlands, 373-398. 

 

 

 

 


