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1. Introduction 

The original AMOEBA technique is directly connected to the spatial cluster analysis 

which has been a norm for researchers dealing with areal data. The task is to identify 

areal units associated with certain types of spatial clusters. LISA (local indicators of 

spatial association) such as local Moran’s iI  and Getis-Ord’s 

iG  have been 

extensively utilized. However, people have increasingly recognized that identifying 

significant areal units is one thing, delineating spatial clusters associated with the areal 

units is another.  

AMOEBA stands for a multidirectional optimal ecotope-based algorithm and has 

originally been developed by Getis and his associates (Getis and Aldstadt 2004, Aldstadt 

and Getis 2006, Lee et al 2010). This is basically a way of delineating univariate spatial 

clusters based on LISA. This paper basically attempts to extend the AMOEBA technique 

to bivariate situations. Why we need a bivariate AMOEBA? The answer would be that 

there exists the 'bivariate spatial dependence' in our data. Lee (2001, 2012, 2015) and Lee 

and Cho (2013) defined the bivariate spatial dependence as "the systematic relationship 

between the spatial proximity among observational units and the numeric similarity in 

terms of pairwise bivariate association".  

We have four different types of 'pairwise bivariate association' for each areal unit; 

H=H, H=L, L=H, L=L (the sign of '=' indicates that we are dealing with 'bivariate' 

situations). A positive bivariate spatial dependence refers to a situation that nearby areal 

units have better chance to have the same type of pairwise bivariate association; for 

example, an areal unit of H=H association could be surrounded by ones with the same 

association. However, the concept of the 'bivariate spatial cluster' is quite complicated. 

We hardly expect that all the adjacent areal units share the same association type. Then, 

some crucial questions come out: what if a reference area with H=H is surrounded by 5 

neighbors with H=H and one with H=L, or surrounded by 4 with H=H and two with H=L; 

how to define a bivariate spatial cluster; how to draw its boundary.  

Thus, the main objective of the paper is to answer all these questions and to develop a 

bivariate AMOEBA technique to delineate bivariate spatial clusters. 

2. Conceptualizing a Bivariate Spatial Cluster 

According to local Moran's iI , there are four different types of 'univariate spatial 

association'; H-H, H-L, L-H, L-L (the sign of '-' indicates that we are dealing with 
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'univariate' situations). However, Getis-Ord’s 

iG  reduces those four different types into 

two values, H
*
 and L

*
 by taking a weighted average for a whole local set composed of a 

reference area and its neighbors. We regard the two values as two different types of 

'univariate spatial clusters': H-H and L-L associations are definitely associated 

respectively with H
*
 and L

*
 clusters; however, H-L and L-H associations could go either 

way. 

When one more variable is involved, the situations become much more complicated. 

For each location, there are 16 different types of 'bivariate spatial association' since two 

sets of four different types of univariate spatial association should be considered. 

However, we only have four different types of 'bivariate spatial clusters' when the notions 

of two univariate spatial cluster types (H
*
 and L

*
) are applied; H

*
=H

*
, H

*
=L

*
, L

*
=H

*
, and 

L
*
=L

*
. The H

*
=H

*
 type, for example, indicates a situation that a local set shows the H

*
 

cluster type for both variables.  

3. A Statistic for a Bivariate AMOEBA 

Our statistic for a bivariate AMOEBA is heavily dependent upon Getis-Ord’s 

iG . One 

of the main advantages of using 

iG  than other LISA is that the statistic can increase 

when you add more areal units. 

iG  can be written as: 

 

    12

.

2

.

.













nwnws

xwxw
G

ii

ij jij

i     (1) 

 

If a spatial weights matrix is a row-standardized version of a binary contiguity matrix, 

equation 1 is simplified into equation 2. 
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Now 

iG  is seen as the product of a spatial moving average of z-scores ( 

iz~ ) for a 

local set and a scalar ( ) which is responsible for a larger 

iG  even with a decreased 


iz~  due to the addition of areal units.  

We utilize a bivariate LISA, 

iL  (Lee 2001, 2004, 2009, 2012, 2015) which can be 

written as: 
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When a spatial weights matrix is row-standardized, equation 3 is reduced to equation 4. 

 
 
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Now, the statistic is seen as the product of spatial moving average of z-scores for X-

variable and spatial moving average of z-scores for Y-variable. By multiplying the   

and the bivariate LISA, the final statistic is presented as: 
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As more areal units are involved to constitute a region, δ increases but 

iL  usually 

decreases. If an increase in   is large enough to compensate for a decrease in 

iL , the 

overall statistic increases. If an increase in   is not large enough, the region stops 

expanding. 

4. An Algorithm 

The algorithm is composed of two parts; delineating a maximum boundary for each areal 

unit and retaining/discarding overlapping boundaries. The first thing you should do is to 

choose which type of bivariate spatial clusters you are interested in. If you choose the 

H
*
=H

*
 cluster, then areal units having the H=H type of bivariate association function as 

seed cells. For only the seed cells, boundaries are drawn.  

First, you select a seed cell and calculate 
ii YXi zzr  . This value is the  0

iL , the 

baseline statistic. Then, consider each of the contiguous neighbors and check which one’s 

addition increases the statistic most. The highest 

iL  will be  1

iL , the maximum 

value at the stage 1. Now the boundary is the boundary 1. In the second stage, you 

consider each of the contiguous neighbors and check which one’s addition increases the 

statistic most. The highest 

iL  will be  2

iL , the maximum value at the stage 2. Now 

the boundary is the boundary 2. If there is no contiguous cell whose addition increases 

the statistic, then we reach the final stage. The current 

iL  is  fLi

 , the final 

maximum value for cell 1, and the boundary is the maximum 

iL  boundary. 

You can do the same thing for all the other seed cells to obtain their maximum 

boundaries. Since the resulting boundaries should overlap with each other, we should 

have an eliminating rule; only the boundary with the highest final statistic survives.  

5. An Application 

Our example is about Seoul, the capital city of South Korea which is composed of 522 

administrative areal units. What we are interested in here is the correlation between 

average land value, proxy for job centrality, and educational attainment, proxy for income 

of residents. The global correlation is moderate or somewhat high. In general sense, job 

centers and good residential areas are spatially separated. But in Seoul, some areas have 

both. Since we have a positive correlation, it would be reasonable to expect more and 

larger H
*
=H

* 
and L

*
=L

* 
clusters rather than H

*
=L

*
 and L

*
=H

*
. We focus H

*
=H

* 
and 

L
*
=L

* 
spatial cluster boundaries for Seoul. Other situations where a negative overall 

correlation is dominant will have more and larger H
*
=L

*
 and L

*
=H

*
 rather than H

*
=H

* 

and L
*
=L

* 
clusters. 
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