
389 

 

Deviation flow refueling location model for continuous 
space: commercial drone delivery system for urban area 
 

Insu Hong
1
, Michael Kuby

2
, Alan Murray

3
 

 
1School of Geographical Sciences and Urban Planning, Arizona State University,  

Coor Hall 5515, 975 S. Myrtle Ave, Tempe AZ 85287  

+1-480-965-7533 

ihong@asu.edu 
 

2 School of Geographical Sciences and Urban Planning, Arizona State University, 

Coor Hall 5515, 975 S. Myrtle Ave, Tempe AZ 85287 
+1-480-965-6850 

mikekuby@asu.edu 

 
3 Center for Spatial Analytics and Geocomputation 

College of Computing and Informatics / School of Public Health 

 Drexel University, Philadelphia, PA 19104 
amurray@drexel.edu 

 

Abstract  

Recently, drones, which refer a range of small-size unmanned aerial vehicles propelled 

by multiple rotors, have been utilized for various purposes, such as for military, 

surveillance, photography, and entertainments. Commercial delivery service for small 

products is one of the potential applications, and optimal path planning is essential for 

operational efficiency of the delivery service. As a drone’s movement is not limited to 

existing transportation network, path planning needs to be conducted in continuous space 

with taking into account obstacles for flight. However, due to limited flight range of 

battery-powered drones, multiple recharging stations are required to complete delivery 

without running out of the power in large urban area. In this research, we developed a 

new coverage model that can optimize location of recharging stations for delivery drones, 

as well as ensure construction of a feasible delivery network that connects the stations 

and covered demands based on continuous space shortest paths. A heuristic solution 

technique is utilized for the optimization of station location. Application results show the 

effectiveness of our model for construction of drone delivery network that covers large 

urban area.   
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1. Introduction  

Drones, or small-size, battery-powered unmanned aerial vehicles propelled by multiple 

rotors, have been in the news in recent years. Drones are increasingly utilized for 

purposes ranging from military to surveillance, photography, and entertainment, and 

civilian usage of drones are increasing rapidly in public and private sectors (Finn and 

Wright 2012, Clarke 2014).  

Among potential civilian applications, commercial drone delivery service for small 

products draws attention from public and private sectors. Several private companies and 

public agencies around the world have proposed or tested drone delivery system (Clarke 
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2014). Drones have potential for fast and low cost delivery for short distance, and 

alternatives for an area of poor transportation infrastructure such as small islands.  

For drone package delivery system, path derivation method in continuous space and 

location model for recharging stations for drone are crucial. Since a drone is able to move 

in airspace, its movement does not limited to transportation network. However, barriers, 

such as obstacles and flight restricted zones, may impact on drone’s flight path. 

Therefore, considering obstacles for continuous space movement is essential for route 

derivation method for drones. To cover large urban area, however, a method to extend 

drone’s limited flight range must be considered. Battery-replacing recharging stations for 

drones can be answer for this issue. A new location model that optimizes spatial 

configuration of recharging stations while considering feasible delivery network is 

necessity.  

In this research, we propose a new location model for commercial drone delivery 

system in urban area. Recently developed obstacle-avoiding path derivation technique is 

utilized for route construction and distance measurement. A coverage optimization model 

is developed for locating recharging stations with a spatial heuristic solution technique. 

Application result is presented to demonstrate capability and efficiency of the new 

location model and solution technique.  

2. Route derivation: convexpath algorithm   

Route planning for drone needs to reflect several considerations. First, movement of 

drone is not confined to a transportation network. However, obstacles such as mountains 

and high-rise buildings may impede drone’s flight. Also, flight restricted areas such as 

airports and military installations can act as obstacles. Lastly, flight path of a drone can 

be assumed as 2 dimensional route, since maintaining altitude will be ideal strategy for 

battery efficiency.  

This 2 dimensional, obstacle-avoiding shortest path in continuous space has been 

referred to as Euclidean shortest path (ESP), and several ESP derivation methods have 

been developed (Lozano-Pérez and Wesley 1979, Asano et al. 1986, Hershberger and 

Suri 1993, Mitchell 1999). Recently, Hong and Murray (2013a), (2013b) developed the 

convexpath algorithm for efficient derivation of the ESP. Convexpath exploits spatial 

knowledge and GIS functionality to identify relevant obstacles and construct a graph that 

includes the ESP. The notion of convexpath and the shortest path spatial filter efficiently 

identify obstacles that impact on the ESP for given origin and destination points.  

 

 
Figure 1. Example of ESP route planning  
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Example of obstacle-avoiding route from a station to a demand is shown in Figure 1. 

Given demand is in the coverage of the station if consider Euclidean distance. However, 

the ESP distance to demand exceeds drone’s maximum flight range with payload. 

Therefore, given recharging station cannot cover the demand.  

3. Distance restricted maximal coverage location model  

To extend limited flight range of battery-powered drones, battery swapping recharging 

stations will be required. Recharging station extends flight range of drone by replacing 

depleted battery to fully-charged one. From warehouse or station, a drone fly either to 

next station to reach destination or to a demand within distance of safe return. Therefore, 

each recharging station is considered providing service for demands in a given area.  

Furthermore, the location model for drone delivery system considers construction of 

network for delivery. Recharging stations must be located under consideration of drone’s 

flight range with payload. Stations are linked if their ESP distance is shorter than 

maximum flight range with payload, and this arcs form the delivery network.   

To construct location model for efficient drone delivery network, we assume as 

follows: 1) a drone departs from a warehouse with fully-charged battery, and returns to 

identical warehouse; 2) drone makes single delivery; 3) with payload, drone’s flight 

range is reduced to half of remaining; 4) distance metric is ESP distance; 5) to satisfy 

demands, warehouses and recharging stations need to be fully connected through 

network; and 6) location of warehouses is given, and included as recharging stations.  

In this research, a new coverage location model is proposed, referred to as distance 

restricted maximal coverage location model. This model has two objectives: 1) 

maximizing demand coverage; and 2) minimizing average flight distance from 

warehouses to recharging stations, via constructed network. To construct feasible 

delivery network, maximum distance restriction between stations and warehouses is 

applied, that is the half of maximum flight range. Consider following notion:  

 

𝑗, 𝑘 = index of potential facility sites where 𝑗, 𝑘 = 1,2, … , 𝑚 

𝑙 = index of warehouse locations where 𝑙 = 1,2, … , 𝑟  

𝑖 = index of demand units where 𝑖 = 1,2, … 𝑛 

ℎ𝑖 = demand at i 

𝑑𝑖𝑗 = ESP distance between i and j 

𝑠𝑖𝑗 = network shortest distance between i and j 

𝑓𝑚𝑎𝑥 = flight range with maximum payload  

𝑓0 = flight range with empty payload 

𝑁𝑖 = {a set of sites that can cover demand 𝑖}  
𝑀𝑗 = {a set of sites that within 𝑓𝑚𝑎𝑥 from site 𝑗}  

𝑋𝑗 = {
1, if a facility is located at potential site 𝑗
0, if not                                                               

  

𝑍𝑖 = {
1, if a demand 𝑖 is covered by at least one facility
0, if not                                                                              

                                                                                                                             

𝐶𝑙𝑗 = {
1, if a site 𝑗 is connected to source 𝑙
0, if not                                                     
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Objective function  

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ ℎ𝑖𝑍𝑖
𝑟(𝑝−𝑟)

∑ ∑ 𝑋𝑗𝑠𝑙𝑗
𝑚
𝑗=1

𝑟
𝑙=1

                                         (1) 

Subject to: 

∑ 𝑋𝑗𝑗∈𝑁𝑖
≥ 𝑍𝑖                        ∀𝑖                                        (2) 

∑ 𝑋𝑘𝑘∈𝑀𝑗
− 𝑋𝑗 ≥ 0             ∀𝑗                                        (3) 

𝐶𝑙𝑗 = 𝑋𝑗                                 ∀𝑙, 𝑗                                     (4) 

∑ 𝑋𝑗
𝑚
𝑗=1 + ∑ 𝑋𝑙

𝑟
𝑙=1 = 𝑝                                                  (5) 

𝑋𝑙 = 1    ∀𝑙                                                                    (6) 

𝑋𝑗, 𝑍𝑖 , 𝐶𝑙𝑗 = {0,1}                                                          (7) 

 

Objective function (1) is to maximize covered demand while minimizing average 

network distance from each warehouse to each selected facility site. Constraint (2) 

defines coverage. Constraint (3) is for minimum connectivity constraint, to prevent 

isolation of stations that separated from warehouses. Constraint (4) is source connectivity 

constraint, which ensure connection of demands to every warehouse via delivery 

network. Constraint (5) and (6) are for reflecting given warehouses.  

4. Solution technique: simulated annealing 

To obtain solution for the distance restricted coverage model, a heuristic solution 

technique that utilizes spatial knowledge is developed. Greedy algorithm is utilized to 

generate feasible solutions. Interchange algorithm (Teitz and Bart 1968) improves quality 

of solutions from the greedy algorithm. What is novel in this approach is utilization of 

spatial knowledge for efficient evaluation of candidate sites while preserving feasibility. 

In the greedy process, only candidate sites that can be reached from current solution set 

are evaluated, to facilitate the process. Once solution set and delivery network are 

generated, the interchange algorithm improves solution quality while maintaining 

feasibility of the network. The interchange process also uses spatially restricted 

candidates, but more strategically. If a station is critical for preserving feasibility of the 

network, the interchange algorithm evaluates candidates around it that are able to keep 

connectivity of stations.  

Simulated annealing (Kirkpatrick 1984) is applied for the distance restricted coverage 

model to prevent the solution process stops in local optimum. To improve solution 

quality, we enhance the simulated annealing with a solution memory. It ‘remembers’ the 

best solution so far, but accepts inferior solutions based on temperature condition. 

However, if resulting solution after termination is inferior to the memorized one, stored 

best solution is selected.  

This spatial simulated annealing derives a solution like followings: 1) initial solution 

is generated in random, considering distance restriction and warehouse connectivity; 2) 

randomly remove given number of stations from solution; 3) generate new solution using 

the greedy algorithm; 4) improve solution using the interchange algorithm; 5) determine 

acceptance of new solution based on simulated annealing criteria; and 6) repeat step 3 to 

5 until termination condition is satisfied.  
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5. Application results  

To assess efficiency and solution quality of the distance restricted coverage model for the 

drone delivery system, a test application in large urban area is assumed. A part of 

Phoenix Metropolitan area is utilized for the test application. Centroids of census blocks 

represent demands for the delivery service, and total 32,940 demand points are utilized. 

For candidates for recharging stations, 500 points are randomly selected from the 

demands, including 3 warehouses. Flight range of drone is assumed 10 mi for empty 

payload, and 5 mi for full payload. Demand coverage of each station is 3.3 mi, which 

ensures safe return of a drone to the station after finishing delivery. Heuristic solution 

technique is implemented in Python 2.7 using open source spatial library. The analysis is 

carried out on Intel i7 CPU with 8 GB memory system.  

Figure 2 shows a solution with 25 stations including 3 warehouses. This solution 

covers 91.5% of total population in this area. This takes 1,353 second to compute the 

solution.  

 

 
Figure 2. Solution for 25 recharging stations in Phoenix area 

 

To assess solution quality and computational performance, commercial solver will be 

used to derive integer programing solution.  
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