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1. Introduction  

The ability to effectively model the spread of infectious diseases over space and time is 

an important tool in an increasingly connected world. Epidemic modeling allows analysts 

to estimate the size of ongoing outbreaks, quantify pathogen reproductive behavior, 

evaluate public health interventions, and predict the degree of future spread. Despite 

these attractive features, epidemic models can be difficult to specify and computationally 

impractical to fit.  

We propose a general class of epidemic models which allows the straightforward 

specification of a wide range of spatial structures, and have developed the open source 

libSpatialSEIR epidemic modeling software to implement it. Set in the stochastic 

compartmental modeling framework, these techniques track the transition of populations 

through the Susceptible, Exposed, Infectious, and Removed disease states, and can 

address a wide array of spatial and non-spatial hypotheses (Porter and Oleson 2013; 

Lekone and Finkenstädt 2006; Chowell et. al. 2004). Our software aims to expand both 

the class of models which may be feasibly fit on modest hardware, in addition to the 

number of researchers with the ability to use them. It includes both a simplified, high 

level, API for standard analyses and a set of tools for specifying the model components 

individually to allow for maximum flexibility. 

In this work, we introduce the conceptual framework behind these models, discuss 

several important computational tools, and finally illustrate the model fitting, selection, 

and prediction process in the context of the ongoing Ebola epidemic in West Africa.  

2. Stochastic Compartmental Models 

Compartmental techniques have a long history in the epidemic modeling literature, and 

were originally introduced in the context of deterministic systems of differential 

equations (Kermack and McKendrick, 1927; Hethcote, 2000). Stochastic formulations of 

these techniques introduce probabilistic transitions between disease states, allowing for 

full estimation of the uncertainty of important model parameters. Our work concerns the 

stochastic spatial SEIR model class, which incorporates measurements of disease 

processes which occur over discrete time and space. This often corresponds directly to 

the spatiotemporal scale on which epidemic data is available: periodic counts of disease 

incidence in administrative regions. The temporal process employed by these models is 

given in Equations 1 and 2, for time points  and spatial locations

. 



414 

 

 

 

 

         (1),       (2) 

         

 

 

 

We introduce spatial and temporal heterogeneity into the prior structure for the 

exposure probability, , by including a linear predictor term to capture shared and 

location specific explanatory variables, and a set of distance matrices, 

, to model contact between spatial locations. Each distance matrix is 

associated with a single spatial parameter, , which determines the contribution of the 

corresponding distance metric to the epidemic mixing process. With the introduction of 

several minor distributional assumptions, this exposure probability can be shown to have 

the parametric form given in Equation 3 (Brown et. al. 2015). Here,  denotes the value 

of the linear predictor corresponding to the time point  and spatial location . An 

example of practical use of this linear predictor term is given in Section 4.  

 

(3) 

 

A simple exponential form is employed for the E to I and I to R transitions, and is 

illustrated in Equation 4. In this parameterization,  and  correspond to the 

average latent and infectious periods in the chosen temporal unit, respectively.  

 

 (4) 

3. Software 

The libSpatialSEIR modeling software, freely available online (Brown, 2014), comprises 

a C++ library and R-package interface, and aims to provide an easy to use and flexible 

implementation of the spatial SEIR and SEIRS model classes. The software was designed 

to allow researchers to quickly begin modeling epidemics, while allowing enough 

flexibility to explore numerous hypotheses. An example of how simple the R code 

required to perform such an analysis can be is given in Example 1. The code presented 

here reads in incidence data for the 1995 Ebola outbreak in the Democratic Republic of 

the Congo, and fits a model to evaluate the effectiveness of the intervention efforts. A 

complete analysis of these data using libSpatialSEIR may be found in our manuscript on 

the Empirically Adjusted Reproductive Number (Brown et. al. 2015). 
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Example 1: High Level API 

  

4. Analysis 

In order to explore the range of decisions which inform epidemic data analysis in the 

spatial SEIR setting, we demonstrate a complete analysis of the 2014-2015 Ebola 

epidemic in West Africa. Data were originally collected from World Health Organization 

situation reports, and were pre-processed and smoothed for clarity. In Example 2, we 

begin by loading the requisite R packages and reading in the processed data. As we have 

found no complete and detailed account of all public health intervention activities, we 

employ a set of basis splines to capture changes in population behavior over the course of 

the epidemic. Using the model selection techniques discussed in Brown et. al. (2015), we 

selected a three degree of freedom basis, created with the ns function from the splines 

package. This temporal basis is then combined with a separate intercept for each nation to 

form the intensity process design matrix, Z. Finally, we define a distance matrix for each 

national border. This spatial structure is defined by a set of indicator functions, equal to 

one when the spatial locations with corresponding row and column indices share a border 

and zero otherwise. While such a spatial structure is discrete, one could instead include 

informative weights motivated by, for example, a gravity model. Our development may 

be seen explicitly in Example 2.  

Specification of hierarchical models is always complex. In libSpatialSEIR, we define 

an array of model objects which correspond to each level of the model. This includes a 

data model to relate the observations to the underlying epidemic parameters, process 

models to capture exposure, any reinfection activity, latent and infectious durations, and 

spatial heterogeneity, starting values for unknown population counts, and finally 

instructions for initial configuration of the MCMC samplers. These components are 

created in Example 3, and combined into a functional model by the buildSEIRModel 

function.  

 

 

 

 

 

 

 

 

library(spatialSEIR) 

cases = read.csv("http://bit.ly/1wdm3Xr") 

 

results = fit.qSEIR(Count ~ daysSinceIntervention,  

        p_ei=1-exp(-1/5),    

     p_ir=1-exp(-1/7),  

     data = cases,  

     N = 5.36e6,  

     transition_ess=1000, 

     seed=12345, 

        n.cores=3,  

     return.cluster=TRUE) 
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Example 2: Ebola Model Preparation 

 
 

Example 3: Low Level API 

 

library(spatialSEIR) 

library(splines) 

 

# Read in Data 

processedData = read.csv("http://bit.ly/1DYcLQx") 

 

# Build temporal basis 

basis = ns(cumsum(processedData$offset), df = 3) 

Z = cbind(diag(3)[rep(1:3, each = nrow(processedData)),], 

          basis[rep(1:nrow(basis), 3),]) 

 

# Declare neighborhood matrices.  

DM1 = matrix(c(0,1,0, 

               1,0,0, 

               0,0,0), nrow=3, byrow=TRUE) 

DM2 = matrix(c(0,0,1, 

               0,0,0, 

               1,0,0), nrow=3, byrow=TRUE) 

DM3 = matrix(c(0,0,0, 

               0,0,1, 

               0,1,0), nrow=3, byrow=TRUE) 

 

# Define the data set 

cases = cbind(processedData$Guinea, processedData$Liberia, 

              processedData$SierraLeone) 

 

# Declare the population matrix and initial infectious counts 

N = matrix(c(1.005e7, 4.1285e6, 6.1902e6), nrow = nrow(cases), 

           ncol = 3, byrow=TRUE) 

I0 = c(86,0,0) 

 

DataModel = buildDataModel(cases, type = "overdispersion", phi = 1) 

ExposureModel = buildExposureModel(Z, nTpt=nrow(processedData),  

                           nLoc=3, offset=processedData$offset) 

ReinfectionModel = buildReinfectionModel("SEIR") 

SamplingControl = buildSamplingControl(iterationStride=500) 

InitContainer = buildInitialValueContainer(data=cases, N=N,  

                                           S0=N[1,]-3*I0, 

                                           E0 = I0, 

                                           I0 = I0) 

DistanceModel = buildDistanceModel(list(DM1, DM2, DM3),  

           priorAlpha = 1,  

                                   priorBeta = 10) 

TransitionPriors = buildTransitionPriorsFromProbabilities( 

      p_ei = 1-exp(-1/5),  

      p_ir = 1-exp(-1/7),  

      p_ei_ess = 1000,  

      p_ir_ess = 1000) 

SEIRModel = buildSEIRModel("samples.csv", DataModel, 

                           ExposureModel, ReinfectionModel, 

                           DistanceModel, TransitionPriors, 

                           InitContainer, SamplingControl) 
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While the high level qSEIR and qSpatialSEIR functions automatically run several 

MCMC chains until convergence, the general model specification tools used here require 

the user to configure and execute samples. This process is illustrated in Example 4, which 

also produces the example infectious count summary shown in Figure 1.  

 
Example 4: Sampling and Inference 

 
 

Example R code to generate predictions using MCMC samples is available in the 

supplemental companion package to Brown et. al. (2015). Predictions made using the 

latest available data in January 2015 showed a decrease in infection size in all three 

nations with an epidemic extinction time in late April. Updated models at the end of 

March validate the observed decrease in Sierra Leone and Guinea in particular, but 

indicate that different dynamics have taken over as the epidemic has shrunk (Figure 2). 

Such behavior is likely due to unmodeled spatial heterogeneity; the epidemic spreads 

within and between villages and counties, so nationally aggregated data provides a 

relatively coarse view of the underlying disease dynamics 

 

 

 

 

 

 

 

 

# Keep track of compartment counts, not just basis parameters 

sapply(0:2, function(i){SEIRModel$setTrace(i)}) 

 

# Configure samplers; these are reasonable values for many analyses. 

SEIRModel$compartmentSamplingMode=17 

SEIRModel$useDecorrelation=10 

SEIRModel$performHybridStep=11 

 

# Run the model 

SEIRModel$simulate(100000) 

 

# Read in the MCMC samples 

mcmc.samples = read.csv("samples.csv") 

 

# Clean up C++ objects 

rm(SEIRModel, DataModel, ExposureModel, ReinfectionModel, 

   DistanceModel, TransitionPriors, InitContainer,  

   SamplingControl) 

 

# Example summary measure, shown in figure 1 

hist(mcmc.samples$I_2_46[100:nrow(mcmc.samples)],  

     main = paste("Estimated Remaining Infectious Individuals”, 

      “\n Sierra Leone – 3/29/2015"), 

     freq=FALSE, breaks = 20, xlab = "Currently Infectious") 
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Figure 1: Example Output 

 

 
Figure 2: Current Predictions 

 

5. Impact 

These powerful analytical methods, while intuitive, have long lacked high level 

computational tools. The ability to quickly assess the behavior of emerging pathogens, 

characterize the effectiveness of interventions, and evaluate the drivers of geographic 

spread is of great importance in the management of epidemics. Our software addresses 

these analytical needs in three ways. First, the development of empirically driven 
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reproductive number estimates provides a tool to estimate changes in epidemic spread 

over time (Brown et. al. 2015). Second, the general parameterization of the exposure 

process allows the inclusion of intervention effects, climactic and weather related data, 

and numerous other quantities which vary over both space and time.  Finally, the flexible 

and intuitive spatial structure of these models allows the incorporation of diverse 

geospatial data, and leverages existing spatial computation and data expertise. We believe 

that our software has the potential to make such analyses feasible for a wider community 

of researchers. Moreover, the development emphasis on computational efficiency allows 

the use of larger data sets than could be practically analyzed in this setting in the past, and 

work is ongoing to better utilize the heterogeneous computing architectures increasingly 

available even on consumer devices.  
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