
447 
 

GeoSquare: A cloud-enabled geospatial information 
resources (GIRs) interoperate infrastructure for 

cooperation and sharing 
 

Kai Hu
1
, Huayi Wu

1
, Zhipeng Gui

2
, Lan You

1
, Ping Shen

1
, Shuang Gao

1
, Jie Zheng

1
, 

Xiaoqiang Cheng
1
 

 
1 The State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, 

China 

 
2 School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, China, 

 
3 Faculty of Computer Science and Information Engineering, Hubei University, Wuhan, China 

 

1. Introduction  

With the advancement of sensors and information technologies, a large amount of 

geographical information resources (GIRs), including geospatial data, algorithms, 

application and models, have been available on the internet for public use. Due to the 

heterogeneity and complexity of the abundant resources, the interoperation of the 

geospatial resources became a crucial challenge to the geo-computation(Gong et al., 

2012). A lot of platforms aimed at sharing and collaboration of the GIRs were built to 

tackle the problems. By integrating registry and sharing functions of the geo-data and 

geo-service models, they were able to utilize the resources intuitively and offered a 

common communication platform for collaborative operations between researchers and 

teachers. 

However, because of the GIRs’ large-volume characteristic and the frequent user 

operations, the performance and scalability issues of the platforms become serious 

challenges. Secondly, under the normal architectures, the service and service chains and 

the to-be-processed data are often distributed in different internet places. The sharing 

become intolerable for the long delay of data transferring by the internet. Thirdly, when 

dealing with the input parameters of the geo-services, user will often find them too 

complex and uninterpretable. Unlike the normal web services, the geo-services are 

correlated to certain operation of the geo-data which is often different from the normal 

parameters. Based on that, we proposed a prototype system to tackle the problems. 

2. Overview of our approach  

With the mentioned problems taken into consideration, cloud-enabled computation came 

into our sight for its characteristics of large scale, virtualized, high reliability, 

commonality and scalability at a low price. In order to solve the mentioned problems, we 

promoted an infrastructure architectures named GeoSquare by combing with the widely 

used private cloud solution (Fig 1). 



448 
 

 
Figure 1. The architecture of cloud-enabled GeoSquare 

 

In this architecture, we used the master-slave mode to solve the scalability problem 

and data transferring problems and extended the sharing forms in an attempt of a Rich 

Internet Application (RIA) to make the user interface more friendly. The promotions are 

described specifically as follows: 

2.1 Performance improvement using cloud technology  

To overcome the scalability problems of the normal sharing platform’s, we chose the 

cloud solution to make load balance of large scales to host the geo data, geo services, geo 

service modules and the web host itself. By leveraging the convenient functions provided 

by the cloud, the architecture is designed as the one-data-node-multiple-application-node 

architectures which is convenient for scale up by setting the application-nodes’ numbers. 

The MySQL-cluster is also used to promote the reliability of the metadata 

databases(Ronstrom and Thalmann, 2004). And the services workflow engines are 

expended in the load balance mechanisms in certain scales of server clusters. All of the 

MySQL-cluster nodes, the GeoSquare’s application nodes and the service workflow 

engines are made into templates of the Kernel-based Virtual Machine (KVM) which 

provided by the cloud infrastructure(Habib, 2008). By using control center of the web 

interfaces of cloud management, the clusters’ scale of applications, the databases, and the 

service workflow engines can be deliberately set to coper with different internet 

environment. 

In this part, in order to testify our work efficiently proved the performance of the 

website, we conducted a stress testing experiment on our deployed websites. By using the 

software Apache Benchmark(Sheldon and Weissman, 2007), we conducted the web stress 

test as follows: 

The cluster is constructed by five computer node and one of them is the proxy server. 

We use the Apache Benchmark with the parameter like Table1: 

 



449 
 

Single node test Cluster balance test 

ab –n 3000 –kc 50 

http://singlenodeip/index.html; 

ab –n 3000 –kc 50 

http://clusternodeip/index.html; 

ab –n 3000 –kc 100 

http://singlenodeip/index.html; 

ab –n 3000 –kc 100 

http://clusternodeip/index.html; 

ab –n 3000 –kc 150  

http:// singlenodeip/index.html; 

ab –n 3000 –kc 150 

http://clusternodeip/index.html; 

ab –n 3000 –kc 200 

http://singlenodeip/index.html; 

ab –n 3000 –kc 200 

http://clusternodeip/index.html; 

ab –n 3000 –kc 250 

http://singlenodeip/index.html; 

ab –n 3000 –kc 250 

http://clusternodeip/index.html; 

Table1. Request static file to test the performance of the website 

 

 
Figure 1.test on response time under high concurrency 

 

With the same total amount of request of 3000, we changed the concurrency number, 

and we found that the website’s performance is improved under different concurrency 

visit. 

Single database(innodb) node test Cluster database(ndb) balance test 

ab –n 3000 -kc 50 http://singlenodeip/ 

webserive?request=GetPublic; 

ab –n 3000 -kc 50 http://clusternodeip/ 

webserive?request=GetPublic; 

ab –n 3000 -kc 100 http://singlenodeip/ 

webserive?request=GetPublic; 

ab –n 3000 -kc 100 http://clusternodeip/ 

webserive?request=GetPublic; 

ab –n 3000 –kc 150 http:// singlenodeip/ 

webserive?request=GetPublic; 

ab –n 3000 -kc 150 http://clusternodeip/ 

webserive?request=GetPublic; 

ab –n 3000 –kc 200 http://singlenodeip/ 

webserive?request=GetPublic; 

ab –n 3000 -kc 200 http://clusternodeip/ 

webserive?request=GetPublic; 

ab –n 3000 –kc 250 http://singlenodeip/ 

webserive?request=GetPublic; 

ab –n 3000 -kc 250http://clusternodeip/ 

webserive?request=GetPublic; 

ab –n 3000 –kc 300 http://singlenodeip/ 

webserive?request=GetPublic; 

ab –n 3000 -kc 300 http://clusternodeip/ 

webserive?request=GetPublic; 

Table 2. Request to interact with database to test the performance database 

200

400

600

800

1000

0 50 100 150 200 250 300

ti
m

e
 p

e
r 

re
q

u
e

st
 

concurrency number 

response time under different concurrency  

single(milisecond) load balance over cluster(milisecond)



450 
 

 
Figure 2.test on response time of interaction with database 

 

To testify the performance of the databases, we also made 3000 requests to interact 

with the databases with different engines (single database using innodb and database 

cluster using ndbcluster) of the website from 50 to 300 concurrency and the results 

showed in the Figure 2 that, there is an main trend that total time of iteration with 

database was increasing with the development of the concurrency number. And under the 

different concurrency, the cluster database performance better than the single database 

with serval milliseconds ahead. 

2.2 Data transferring in master-slave mode for service sharing  

To deal with the time-consuming job of frequently data transferring in the service 

invocations, the data uploading and the data processing is departed in the design of the 

GeoSquare’s distribution framework(Figure 3). The input parameters, which stand for the 

remote data, are altered to the results of querying the databases which links to the 

datacenter nodes’ data. Then the service will invocate the inner data transferring from the 

data center to the services host nodes (Figure 4). And the data uploading function is 

provided to the users with the independent interfaces. Lastly, the records of the users 

operations (e.g. Service invocation, data uploading) is also recorded in the database and 

the result data of the operation can be used to share in the certain groups(Figure 5). 

 

0

100

200

300

400

500

0 50 100 150 200 250 300 350

to
ta

l t
im

e
 

concurrency number 

response time of database under different 
concurrency 

innodb database ndb database



451 
 

DataCenter Node

Service Node

User

upload

Application 

node1

Application  

node2

Application 

nodeN

……

invoke
result  query

Client Interface

 
Figure 3.Data transferring in service invoking 

 

 
Figure 4. Interface of retrieving the data needed in a service 

 

 
Figure 5. Sharing the results generated by invoked service to certain groups 

 



452 
 

2.3 Usability and HCI issues in promoting the sharing 

As quoted, GIS were more likely to fail on human and organizational grounds than on 

technical ones(Goodchild, 2007). RIA is an good attempt for improving the usability of 

the web-based application and there are successful examples by adopt the 

technology(Huang et al., 2011).To make the services invocation more friendly, the 

application forms of the corresponding services and service chain models were tested in 

the attempt of several RIAs with the support of the scientific workflow technologies, the 

input mode was extended to the forms of interaction with the mash-up maps implemented 

by RIA technology instead of incomprehensible parameters(Figure 6). 

 

 
Figure 6. RIA interface used in sharing the algorithms in education 

 

3. Conclusion  

Though the above effort, GeoSquare is designed as a cloud computation enabled platform 

which is allowed for sharing the GIRs more efficiently within a larger user scales with a 

relatively more reasonable data transferring solution and the RIA is proved to be an 

efficient way to make the geo services more friendly. And as a whole, the sharing and 

collaboration capabilities of the platform is greatly improved. 

4. Acknowledgements  

This work was supported by Project supported by the National Natural Science 

Foundation of China (Grant No. 41371372). 

 

5. References  
GONG, J., WU, H., ZHANG, T., GUI, Z., LI, Z., YOU, L., SHEN, S., ZHENG, J., GENG, J., QI, K., 

YANG, W., LI, Z. & YU, J. 2012. Geospatial Service Web: towards integrated cyberinfrastructure 

for GIScience. Geo-spatial Information Science, 15, 73-84. 

GOODCHILD, M. F. 2007. Citizens as sensors: the world of volunteered geography. GeoJournal, 69, 211-

221. 

HABIB, I. 2008. Virtualization with kvm. Linux Journal, 2008, 8. 

HUANG, M., MAIDMENT, D. R. & TIAN, Y. 2011. Using SOA and RIAs for water data discovery and 

retrieval. Environmental Modelling & Software, 26, 1309-1324. 

RONSTROM, M. & THALMANN, L. 2004. MySQL cluster architecture overview. MySQL Technical 

White Paper. 

SHELDON, M. & WEISSMAN, G. V. B. Retrace: Collecting execution trace with virtual machine 

deterministic replay.  Proceedings of the Third Annual Workshop on Modeling, Benchmarking and 

Simulation (MoBS 2007), 2007. 


