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Abstract 

Uncertainty quantification is not often performed in spatial analysis and modeling 

applications. One reason is the lack of tools which can handle various kinds of 

uncertainty associated with spatial data. In particular, positional uncertainty in objects is 

often ignored. There has been much research in regards to the modeling of different kinds 

of positional uncertainty (e.g., measurement error, indeterminacy). However, a 

conceptualization which considers several kinds while remaining simple enough for 

everyday use has not been developed. This work presents such a conceptualization along 

with a Python-based implementation which handles positional and non-positional 

uncertainty.  A real world example is used to show how the tool is able to answer the 

question “what is the effect of positional uncertainty in my model?”. 

  

Keywords: positional uncertainty, fuzzy / probabilistic methods, error propagation, 

geographic objects. 

 

1. Introduction  

The GIScience community has identified the need for methodologies and tools for 

uncertainty analysis (UA) which are easy to use but also flexible and objective (see Aerts, 

et al. 2003, Zhang and Goodchild 2002).  Although there has been much theoretical work 

regarding uncertainty in geographical information (Zhang and Goodchild 2002), practical 

tools, particularly those which incorporate positional uncertainty in objects, are few. This 

work presents an implementation of a combination of existing methodologies, resulting in 

a fuzzy-probabilistic UA framework incorporating positional uncertainty, suitable for use 

in a geographic information system (GIS). The tool is demonstrated using a simple GIS-

based groundwater contamination example. 

2. Conceptual Framework 

In addressing positional uncertainty, the focus is on the object-based view of geography. 

The conceptual framework (fig. 1) aims to capture the advantages of probabilistic and 

fuzzy representations of positional uncertainty in geographic objects by categorizing 

them as “rigid”, “deformable”,  “vertex-defined” or “edge-defined” (Brimicombe 1998, 

Heuvelink et al. 2007, Rios 2014).  A rigid object can be used when there is uncertainty 

in its location/orientation but not its shape. A deformable object is suitable when shape is 

uncertain. In both cases, the object possesses a crisply defined boundary and is modeled 

probabilistically. If the object has a vague or indeterminate boundary, a fuzzy approach is 

more appropriate. A vertex-defined object is one where uncertainty in each constituent 
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vertex is modeled as a fuzzy point consisting of fuzzy numbers representing Cartesian 

coordinates. In an edge-defined object, the uncertainty is represented by a perpendicular 

displacement of the object’s edges (line segment connecting two vertices). 

 
 

Figure 1: Uncertain objects. a) Rigid polygon, b) deformable polygon, c) vertex-defined 

polyline, d) edge-defined polyline. Adapted from (Rios 2014). 

 

The choice between the four categories depends on the use case. For instance, the 

footprint of a building may be well represented by a rigid object since it has a well-

defined shape while an edge-defined object might be better for a wetland since its 

boundary is vague. 

The UA framework is based on fuzzy Monte Carlo simulation (FMCS) (Sadeghi, et al. 

2010), which handles both probabilistic and fuzzy uncertainty using a nested approach. 

Probabilistic variables are sampled in an outer loop, which are then held fixed in an inner 

fuzzy loop. The resulting set of fuzzy numbers are processed to produce a pair of 

cumulative distribution functions (CDFs) at each membership level, α. The mean and 

variance of a particular CDF captures probabilistic uncertainty while the effect of fuzzy 

uncertainty is represented by the separation of these CDFs. In the absence of either 

probabilistic or fuzzy uncertainty, FMCS reduces to an ordinary Monte Carlo or fuzzy 

analysis respectively. FMCS is selected over other hybrid methods (Guyonnet et al. 2003, 

Baudrit et al. 2006) due to its ease of interpretability, at the expense of a difficulty in 

selecting an appropriate α-level for decision-making. 

3. Implementation 

Due to its wide support in many GIS, the conceptualization is implemented using the 

Python programming language as the package Wiggly (available at 

http://zoidy.github.io/wiggly). The algorithm (fig. 2) is the following. First the user 

creates a control script which defines the uncertain variables and shapes contained in the 

analysis model M.  Shapes are added to an ObjectManager which stores the definitions 

for later use. The uncertainty quantification (UQ) block then iterates over an outer loop 

which evaluates the fuzzy variables using decomposed fuzzy numbers, using (user-

selectable) random sampling or the reduced transformation method (Hanss 2002). These 

are then held constant in a probabilistic inner loop (loop order reversed for ease of 
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implementation compared to FMCS). In the inner loop, the parameters (which are now all 

single numbers) are passed to a user-created Test Program script which wraps M. A 

particular value of M, m*, is output and saved. The process is repeated until all 

probabilistic runs within all sets of fuzzy samples within all α-cuts are processed. If M 

contains only probabilistic variables, the result is a single CDF and if only fuzzy 

variables are present, a membership function is output. If both are present, a pair of CDFs 

at each α-cut is the result. 

 

 
 

Figure 2: Implementation of the uncertainty conceptualization. The solid arrows indicate 

primary logic flow. Dotted arrows indicate transfer of flow to (or from) a subroutine. If 

the dotted arrows do not return,   primary logic flow may continue without waiting for a 

return value. The dotted lines with no arrows indicates interaction between components, 

without transfer of flow. 
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To enable GIS interaction, an interface to the QGIS software is made available which 

allows the use of Wiggly as a loosely-coupled tool to analyze GIS-based models. 

4. Comparison to Other Tools 

Although general software such as MATLAB or R is capable of UA, purpose-built tools 

save much effort and are generally easier to use. The DUE (Brown and Heuvelink 2007) 

is one of the only tools which includes positional uncertainty in the analysis of spatial 

data.  Its main strength is the capability of guiding the user through the modeling process 

in a structured way and managing certain aspects of uncertainty modeling.  It is not 

capable of executing a model or analyzing results. In comparison, Wiggly’s focus is on 

providing a flexible way of including mixed positional uncertainties in GIS models, 

managing UA execution, and providing analysis tools in the form of plots. Table 1 

compares the main features of the two tools. 

 

5. Example 

We wish to determine the nitrate load to a river, due to nearby septic systems (fig. 3), 

given that the locations of the septic system drainfields and (a portion of) the boundary of 

the river are uncertain. Contaminant transport is modeled in one-dimension using (Bear 

1972, p. 631): 

𝐶(𝑥, 𝑡) =
𝐶0

2
𝑓𝑥(𝑥, 𝑡),                                                                   (1) 
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 Wiggly DUE 

Uncertainty Representations Probabilistic, fuzzy, mixed Probabilistic 
Positional Uncertainty Vector Vector, raster 
Attribute Uncertainty Yes Yes 
Correlation Yes, manually defined Yes, aided by an included tool 
Programmable Yes Yes 
GIS coupling Yes, via included library No 
Graphical interface No (future work) Yes 
Execute an UA Yes, models are black-boxes No, generate realizations only 
Process output Yes, plot results automatically No 

 

Table 1: Comparison of DUE and Wiggly 
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Figure 3: Example problem. + = Drainfields. River polygon vertices:  ▲= certain, Δ= 

uncertain. 

 

Table 2 shows the explanation and values of the parameters used for C(x,t) and table 3 

shows the uncertain object specifications. Each fuzzy point was sampled using the 

reduced transformation method at 11 α-cuts. For the probabilistic loop, 200 realizations 

were computed. Flow paths were calculated from each drainfield (hydraulic gradient 

obtained from an external model) using a script in QGIS. Eq. (1) was applied to each path 

and the load calculated using an estimate of cross-sectional area at the river boundary of 

2 m
2
 for each path.  

   

 

 

 

Object Class Determination of 
Uncertainty 

Specification (all units are m) 

River Deformable object  
(probabilistic) 

Estimate from source 
metadata 

Each vertex: N(0, 0.612) 

Drainfields Vertex-defined 
object (fuzzy) 

Estimate from expert 
judgement 

Each point: trapezoidal fuzzy 
number. Core = [-2, 2], support =  
[-3.5, 3.5] 

Table 2: Specification of uncertain objects 
 

Parameter Meaning Value 

𝒕 Time 99999 days 
𝜶𝒙 Longitudinal dispersivity 10.88 m 
𝒗 Groundwater velocity  0.9 m/day 
𝒌 1

st
 order decay coefficient 0.08 1/day 

𝑪𝟎 Initial concentration 40 mg/l 
𝒙 Position  L (flow path length. Varies from path to path.) 

Table 3: Values for eq. 1 
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An interpretation of the results is as follows. Fig. 4a shows there is little probabilistic 

variability in the load estimate, indicated by the near vertical CDFs. On the other hand, 

uncertainty due to fuzziness appears to be large, indicated by the wide spread of the 

CDFs.  Using fig. 4a, fig. 4b shows that an optimistic estimate (𝜶 = 𝟏) of the 80% 

quantile of the load is between 160 and 200 mg/day. Visualizing the results in QGIS (fig. 

5) shows that the path length (parameter ‘x’ in eq. 1) is mainly influenced by uncertainty 

in the river boundary while the point of intersection with the river depends mainly on the 

uncertain drainfield location. 

 

 
 

Figure 4: a) Uncertainty in the load estimate [mg/day]. b) Membership of the 80
th

 

quantile. 

 

 
 

Figure 5: Effect of uncertainty on the flow path. Dashed line is the path without 

uncertainty. Note the ‘X’ shaped sampling of the drainfield location resulting from the 

reduced transformation method. 

a) b) 
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6. Conclusions 

A tool suitable for analyzing GIS-based models with object-based positional uncertainty 

is presented. Compared to other tools, it allows for the treatment of positional and non-

positional mixed uncertainties and treats models as black boxes, thereby increasing the 

tool’s flexibility. A demonstration using a simple GIS model shows how the tool may be 

applied. 

A drawback to the tool in comparison to others is the lack of a graphical interface. 

Such an interface, embedded within a GIS would ease the use of the software by allowing 

for such things as visual selection of uncertain shapes/vertices and allowing for an easier 

definition of correlation structures. Such an interface is planned. Also planned is the 

integration of a systematic sensitivity analysis methodology. 
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