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1. Introduction 

Currently 54.0% of the world’s population lives in urban environments and by 2050 that 

number will increase to 66.4% (United Nations 2014). However, there are many 

unintended consequences of rapid urbanization such as urban air pollution and equitable 

distribution of services. Therefore, there is an urgent need to better characterize the urban 

environment in order to minimize these unintended consequences. The urban forest is one 

of the critical but under-characterized components of the urban environment that shows 

great potential in mitigating some of these unintended consequences. It has been shown 

that urban green spaces contribute to human health (Donovan 2013), well-being 

(Dallimer 2012), ecosystem services (Escobedo 2011), and societal health (Donovan 

2010). However, the urban forest, like urban areas in general, shows a high degree of 

spatial heterogeneity at a fine spatial scale, and the lack of fine spatial characterization 

presents a challenge in optimizing the benefits of the urban forest. Lidar data can be used 

to characterize the urban forest at this fine spatial scale, but requires time, computational 

power, and specialized knowledge, making it inaccessible to many researchers. 

In this study, we present two geocomputational tools to automate and speed up the 

processing of lidar data. We apply these tools to develop metrics characterizing the urban 

forest in Portland, OR at a 1-meter resolution. The metrics include presence, height, and 

density of canopy. We address the challenges presented in characterizing the urban forest 

with lidar data in order to make lidar accessible and practical to environmental scientists, 

demographers, and urban planners. 
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2. Methods  

2.1 Data 

The lidar data for the Portland Metropolitan Area was obtained as unclassified .las files 

through the Oregon Lidar Consortium as 0.75-minute USGS topographic quad tiles. The 

data was collected during leaf-on conditions in the summer of 2014 and contains 

approximately 8 points/m
2
 (OLC 2014). Data on current infrastructure (buildings, roads, 

water bodies) was used for visualization and verification (Metro 2015). 

2.2 Processing 

In order to create an urban canopy dataset, the .las files were processed in software to 

determine what features exist (buildings, trees, and ground). A raster dataset representing 

canopy presence is created from this new pointcloud. Supplemental raster datasets (fig. 1) 

are then made from the feature-classified pointcloud which are used in the creation of 

canopy height and density datasets. 
 

 
Figure 1. From Left to Right: 1.0m resolution examples of a Digital Elevation Model, 

Digital Surface Model, feature height above ground raster, and canopy height above 

ground raster. All created directly from lidar data with our developed tools. 

 

2.3 Automation of Workflow 

In order to maximize the efficiency of our workflow, we developed automation tools to 

take on the bulk of the processing. The first tool iterates through lidar files and 

automatically processes them, outputting a classified pointcloud identifying canopy, 

buildings, and ground. The second tool creates a larger composite pointcloud from 

smaller processed tiles by merging them together. Next, this tool creates all desired raster 

outputs with no need for additional processing. 

3. Results and Discussion 

3.1 The Urban Forest 

As seen in fig. 2, our tools are able to process data covering large areas while possessing 

incredibly high resolution. 
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Figure 2. A 7.5-minute topographic quad (and detail) within the Portland Metro Area 

displaying a canopy presence dataset created with our automation tools. 

3.2 Automation Tools 

The tools created were developed to maximize efficiency. The raw lidar processing tool 

can be run simultaneously on multiple machines to expedite processing. By classifying 

data automatically, the amount of human hours spent working on the raw data drop 

drastically. The amount of additional quality assurance for a USGS 7.5-minute 

topographic quad is minimal to create accurate 1m raster datasets from the automatically 

classified lidar data. To make the lidar data even more accessible to researchers, the tools 

created for raster extraction and canopy metrics have been turned into a Python Toolbox 

for easy integration into the industry-standard ESRI software suite.  
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In addition to raster creation tools, we have also developed an interpretation tool 

which is accessed through a Python Toolbox. This tool, an automatic sampler, can: create 

multiple buffers from a random set of points at specified distances for use in statistical 

data collection; work around incorrect statistics when sampling rasters with overlapping 

polygon masks; calculate statistics for both binary and non-binary rasters; merge and join 

all tables together with unique naming convention to make further study of the data easier 

seamless. This tool has been used to examine and error-check our lidar-derived datasets, 

however it is not limited to this alone - it can be used to greatly simplify and automate 

any task where large amounts of spatial statistics must be collected over many raster 

variables. 

3.3 Creating a Scheduler 

Many commonly used pre-existing geoprocessing tools currently can only run a single 

task on a single core. This software shortfall greatly limits the speed of processing on our 

highly-resolved lidar-derived raster datasets. For computation-heavy analyses we have 

created a time-saving scheduling tool to optimize both speed and computation of large 

datasets. 

The scheduler splits larger rasters into smaller tiles. The size of these tiles was 

heuristically determined and allows for geoprocessing tasks to be run which would take 

exponentially longer on larger rasters. Next, the scheduler adds these tiles to a table 

within a File Geodatabase which keeps track of the directory path of each tile. When 

multiple instances of the process are open, this tile list keeps track of what has not been 

worked on, what is currently processing, and what is completed. The number of processes 

run is dependent on hardware limitations - in our study we are able to speed up the 

process by a factor of  13.44 (tab. 1). Though simple in concept and construction, this 

tool allows us to take full advantage of hardware by bypassing single-core software 

limitations. 
 

# of Processes 
Run 

Estimated 
Minutes 

Estimated 
Days 

Factor vs. 1 
Process 

1 16082.62 11.17 1 

4 4071.93 2.83 3.95 

8 2122.80 1.47 7.58 

12 1646.57 1.14 9.77 

16 1303.56 0.91 12.34 

20 1196.46 0.83 13.44 

 

Table 1. Increased processing time based on an estimation of 18 7.5-minute USGS 

topographic quads worth of lidar data needed to cover the Portland Metro Area. 

 

3.4 Integration with Planning Practices 

As seen in fig. 3, the data created from the lidar processing is far more resolute than 

commonly available data. We combine these highly resolved metrics with built 
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environment data, American Community Survey data, and observational data to better 

understand the link between urban tree canopy and the role it plays in mitigating urban 

air pollution (Rao 2014) and the urban heat island effect. Our automatic sampling tool 

has already been successfully used by researchers to efficiently compare observational 

point data to a multitude of raster datasets. 

 
Figure 3: Two examples of data for the same rough geographic area. Left: 30m Canopy 

Percent (Xian 2011), Right: Our 1.0m Lidar Canopy Density Metric. 
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