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1. Introduction  

The United States Geological Survey has been working to sample geochemical properties 

across the United States (USGS). Despite its efforts, a complete picture of the amount of 

uranium found across the United States is not readily available. Because uranium is of 

interest to many government agencies, as uranium can both be harmful to the 

environment and be used to produce energy, an accurate interpolated surface of uranium 

would be useful to many parties (USDOE). 

In this poster, we compare the performance of several non-parametric geostatistical 

models for uranium deposits including the k nearest neighbors method, local regression 

models, generalized additive models, and Gaussian Process models (kriging). In each 

case, we optimize model parameters using 15-fold cross validation on a training set, and 

choose the final, most accurate model by comparison of predictions with a test set. 

Evidence for successfully avoiding overfitting through this cross validation process is 

seen in the applicability of our optimal parameters for the prediction of substances other 

than uranium. We find that although each method produces an interpolation that is 

visually distinct, the performance of each on the test set, as measured by the root-mean-

squared error, is only negligibly different from the others’. 

2. Challenges 

Modeling uranium deposits faces several challenges. First, the samples are not uniformly 

distributed across the United States, which introduces uncertainty to any model of 

sparsely sampled areas. Second, standard kriging is not appropriate for this data, since the 

distribution of uranium is neither symmetric nor normal, and furthermore cannot be 

easily transformed into a quasi-normal distribution. Third, the large sample size of over 

40,000 uranium measurements makes traditional kriging almost impossible on a personal 

computer. 

2.1 Dealing With the Large Data 

Local regression and generalized additive models do not pose any computational 

problems given the size of our data. The parameter sweep and cross validation can be 

made faster through trivial parallelization. Standard kriging is too computationally 

intensive to work on this data set. We get around this by using Lattice Krig which 

implements a multi-resolution Gaussian Process model that takes advantage of sparse 

matrices to speed up the computations (Nychka).  
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2.2 Results 

We find kriging to be the most effective method for predicting uranium (see Figure 1). 

The final root mean squared error on the test set is just under 6 parts per million (ppm). 

This is underwhelming, as most of the uranium samples are less than 5 ppm, but we will 

see that a large portion of this error comes from a few highly influential points. This 

method overestimates the value of uranium more often than it underestimates it, but we 

can balance the residuals by using a logarithmic transformation of the uranium prior to 

lattice kriging at the expense of a slightly larger RMSE. We also see large residuals in 

areas where we would expect more uranium from a geological point of view (see Figure 

2). However, the residuals are not spatially correlated. The full results from other 

methods can be found in Table 1. The parameters that were determined to be optimal for 

uranium extend to the accurate prediction of other substances including aluminum, 

chromium, gallium, lithium, and magnesium. 
 

 
Figure 1. Interpolation using Optimal Lattice Krig Method 
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Figure 2. Residuals using Optimal Lattice Krig Method 

 
 

 
Table 1: Results on Test Set 

359.65
1.59
0.57
0.16
−0.12
−0.37
−0.64
−0.96
−1.46
−2.38
−2.38
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3. Strategies for Overcoming the Normality Assumption 

The method that performs the best assumes that the data follows a Gaussian distribution. 

Transformations can help remove patterns in the residuals, but we want to find 

adaptations of the standard methods that do not require normality. 

3.1 Transformations  

Through a logarithmic transformation we can increase our RMSE to a bit over 6 ppm yet 

remove the pattern of overestimating more than underestimating. A Box Cox 

transformation gives similar results with a slightly larger RMSE. Transformations can 

help remove patterns in the residuals, but we fail to lower the overall RMSE. 

3.2 Indicator Kriging 

Indicator kriging does not have any distributional assumptions as it predicts the 

probabilities that the response variable is less than a certain value (Cressie). We use 

Lattice Krig to implement this by predicting probabilities for the response lying in ten 

quantiles of the uranium distribution. We then combine these predicted values to 

determine an expected value of uranium for each location. Note that to determine the 

indicator quantiles and to calculate the expected value, we rely on the true quantiles of 

uranium in our training sample. The expected value interpolation looks reasonable and 

follows the same types of patterns of high areas found by other methods. However, the 

RMSE is very poor (67.4 ppm), and the residuals reach very large values throughout. 

These large overestimates are most likely due to the many standard adjustments that need 

to be made to make the estimates fit within the rules of probability. 

3.3 Disjunctive Kriging 

We can force the uranium data to follow a normal curve exactly by lattice kriging the z-

scores. We can then un-transform to assess performance. This leads to a RMSE of 6.24 

ppm on the test set. We can try a similar method based on ranked data. N-Score kriging 

ranks the sample data and assigns each sample a value based on the expectation of the 

order statistic of the same rank in a standard normal random variable. We then lattice krig 

on the assigned values and again un-transform to assess performance. This gives us a 

RMSE of 6.93 ppm. We can also do the assignments based on the expectation of the 

order statistic of the same rank in a beta random variable or an extreme value random 

variable.  

3.4 Generalized Gaussian Processes- Copulas 

Another option is to use a copula as a replacement for the Gaussian Random Field in the 

kriging (Kazianka and Pilz). The benefit of using this method is that we know that our 

marginal distributions are non-Gaussian. Instead of fitting a parametric copula to our data, 

which is extremely computationally intensive, we can create a data driven empirical 

copula. This is still computationally intensive, but it is reasonable to use on a subset of 

the data at the state level or locally. We choose to look at Colorado. We build an 

empirical copula using the following steps: 

 

1. Find empirical cumulative distribution of uranium F(y). 
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2. Pick a distance h and find locations yi and yj in the training set that are separated 

by h.  The value of h and the width of the band for approximation must be chosen. 

3. Create a set of pairs representing locations that are separated by h using the 

empirical cumulative distribution values for the uranium amounts in each 

location: (F(yi), F(yj)) 

4. This set will contain coordinates that lie within the unit square. When plotted, 

these will form our bivariate density, or copula, of interest. Now we can use this 

empirical copula to predict uranium values for locations in the test set. 

5. For a test point s we find the 10 nearest neighbors in the training set. The use of 

10 neighbors is a choice that could be further optimized. For each neighbor n we 

draw a random value from the copula conditioned on the empirical cumulative 

density value for n, F(n). We can choose to increase the number of random values 

drawn and aggregate them in some way. 

6. We must choose how to aggregate the values from each neighbor. A first step is to 

use the mean across the neighbors. 

 

There are many choices in this method including the choice of h, the bandwidth 

around h, the number of neighbors to use in prediction, and the aggregation method, that 

we optimized using a training and test set. Our best set of parameters yielded a RMSE of 

6.28 ppm. 

4. Future Work: Extreme Values 

In Figure 3 the bottom ten blocks show the influence on our results of extreme values in. 

while the map shows the location of these influential points. The top block represents the 

combined effect of the rest of the points. All of our methods fail to predict extremely 

large values of uranium. For context, the point with the largest influence occurs in a 

location that used to be a commercial uranium mine. Future work will include the 

exploration of extreme value methods to tackle these few, but influential samples. 
 

 
 

Figure 3: Top 10 Most Influential Points 

 

knn local regression GAM LK

Testing: Portions of Total M S E  per P oint

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

all others



477 
 

5. Acknowledgements  

Thank you to Ben Baumer, Nick Horton, and Antonio Possolo for advice and guidance 

on this project. Thank you to NSF Travel Support for funding my participation in this 

conference. 
 

6. References  
Cressie, Noel A. C, 1993, Statistics for Spatial Data. Wiley Series in Probability and Mathematical 

Statistics 

Kazianka, Hannes, and Pilz, Jurgen, 2010, Geostatistical modeling using non-gaussian copulas. Accuracy 

Symposium. 

Nychka, Douglas, Bandyopadhyay, Soutir, Hammerling, Dorit, Lindgren, Finn, and Said, Stephen, 2013, A 

multi-resolution Gaussian process model for the analysis of large spatial data sets. 

http://nldr.library.ucar.edu/repository/assets/technotes/TECH-NOTE-000-000-000-875.pdf 

Nychka, Douglas, 2014, Package “Lattice Krig”. http://cran.r-

project.org/web/packages/LatticeKrig/LatticeKrig.pdf  

United States Department of Energy (USDOE), 2014, DOE Submits Its Defense-Related Uranium Mines 

Report to Congress. http://energy.gov/lm/articles/doe-submits-its-defense-related-uranium-mines-

report-congress  

United States Geological Survey (USGS), 2004, The National Geochemical Survey - Database and 

Documentation. http://mrdata.usgs.gov/geochem/doc/home.htm 

Wood, Simon N, 2006, Generalized Additive Models: An Introduction with R. Chapman and Hall/ CRC 

http://nldr.library.ucar.edu/repository/assets/technotes/TECH-NOTE-000-000-000-875.pdf
http://cran.r-project.org/web/packages/LatticeKrig/LatticeKrig.pdf
http://cran.r-project.org/web/packages/LatticeKrig/LatticeKrig.pdf
http://energy.gov/lm/articles/doe-submits-its-defense-related-uranium-mines-report-congress
http://energy.gov/lm/articles/doe-submits-its-defense-related-uranium-mines-report-congress
http://mrdata.usgs.gov/geochem/doc/home.htm

