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 1. Introduction  
Roads have a deleterious effect on terrestrial biological integrity (Trombulak 2000). As 

vectors, they often direct negative anthropogenic activities on natural landscapes. For 

example, highways and dirt roads alike provide corridors for seed banks and invasive 

plant seed dispersal (Parendes 2000). In addition, depending on traffic volume, roads act 

as barriers to dispersal and as death traps for animals (Alverson 1988). 

In this study, we created a nation-wide traffic disturbance layer derived from AADT 

(Annual Average Daily Traffic) data collected by the Departments of Transportation in 

the 48 contiguous states (CONUS). Our product predicts disturbance from primary roads, 

such as freeways or interstates, and from less-traveled secondary roads, like regional 

highways. The traffic-based disturbance layer provides a spatial variable as input for 

landscape analyses and models concerned with habitat degradation, connectivity of 

ecological systems and animal populations.  

The creation of this layer provides a unique geocomputational problem related to data 

preparation and automated processing of workflow. In contrast to datasets that contain 

evenly distributed and/or concentrated data points across a spatial extent, the AADT data 

often does not follow this pattern. For instance, interstates cover large areas and as a 

result receive fewer data collection points. When kriged, these datasets tend to have large 

areas of one interpolated value between data collection points. Accounting for this 

problem is necessary for a coherent dataset that can be readily used by researchers, 

agencies and policy makers. 

This dataset not only covers the CONUS region, but we believe improves upon 

previous proxy for road-borne environmental disturbance. Through extensive data 
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processing and automation we have created a traffic disturbance index that is novel in 

scale and potential use. 

2. Data  Collection and Processing 
This study assembled datasets for the 48 CONUS states. With the exception of Arizona 

and Texas, all data were collected electronically through states respective Departments of 

Transportation (DOT). The temporal extent varied state by state and to normalize this 

difference in data we initially selected the 2005-2009 time period, but significant loss of 

data for select states required us to expand to the 2002-2010 to maximize temporal 

coverage (Table 1). 

 

Category Description 

Temporal Scale 2002-2011; varies by state 

Spatial Scale Contiguous United States; HI and AK not included 

Source Respective State's DOT 

Units Annual average daily traffic (AADT); vehicles 

Format Point 

 

Table 1. Summary of Data Properties 

 

Another idiosyncrasy with the data set was identified early on: traffic volume 

transitions between states were often abrupt and discontinuous, thus unrealistic. Traffic 

volume estimations doubled or tripled on the same road when moving from one state into 

another. Different methods of DOT traffic volume data collection and estimation are 

most likely the reason for this abrupt shift. To account for this, we buffered each state and 

appended any points within that out-of-state extent to the in-state data set (Figure 2). The 

length of this buffer depends on the neighboring states range, which is generated from the 

neighboring states variogram. For instance, a state like Washington would have two 

distinct buffers, one for each respective bordering state (OR, ID). All buffer creation was 

completed before any interpolation of the point data was carried out. 

3. Methods   

3.1 Method choice 

We chose to model traffic disturbance using ordinary kriging models (Isaaks 1989). 

Traffic modeling estimations commonly utilize a linear networking approach to 

estimating traffic counts by assuming that traffic entered or exited the network between 

AADT counts. For example, if the average daily count is 10,000 vehicles on primary road 

X at point Y and the next count on primary road X at point Z is 8,000 vehicles, 2,000 

vehicles are assumed to have left the traffic on secondary roads between point Y and Z on 

the primary road.  In our case, however, while our main data source is traffic data, our 

goal is the creation of a proxy “disturbance” variable that can be generalized in all 

directions across many state boundaries. The disturbance index covers the whole study 

area and describes the negative effects of traffic volume (death traps for fauna, vectors 

for invasive flora, habitat destruction etc.). Presence and distance to roads are often used 
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as an indicator of these negative effects, but without taking into account traffic amounts. 

We posit that this traffic disturbance proxy will be a stronger indicator of the negative 

effects of roads on ecosystems. This is not an effort to solely interpolate traffic. We are 

using traffic volume as a proxy variable for environmental disturbance in lieu of more 

intangible and difficult to measure variables. Additionally, a geostatistical approach helps 

overcome the issue of abrupt changes in traffic estimation at state boundaries. 

3.2 Method Implementation 

To develop a fully automated workflow for the CONUS region, we used an automated fit 

and  selection of variogram models and its parameters. We used the autoFitVariogram 

and autoKrige functions  implemented in the automap and gstat libraries in R (Hiemstra 

2008, Pebesma 2004). However, the autoMap package has difficulties dealing with large 

areas when creating variograms. To address this shortcoming, we made some 

modifications to the variogram fitting procedures. Using a modified autoFitVariogram 

function (Koohafkan 2012), we were able to create variogram models that fit the data 

more reasonably. Figure 1 shows the sequence of tasks performed. The R code can be 

found online in a code repository (McFall 2015).  
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Figure 1. Methods for Traffic Disturbance Model 
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3.3 Validation  

The validation of the kriged surface layer involves a split between training and testing 

samples that encompass the entire input AADT dataset. Only training values are 

incorporated in variogram creation and kriging for the interpolated AADT output raster 

layer. The observed values of the training samples are then compared to the predicted 

values of the raster layer, which are extracted from the same location as the training 

sample points. Accuracy metrics such as Mean Absolute Error (MAE) and Root Mean 

Square Error (RMSE) are then incorporated to evaluate the accuracy of predicted values. 

Any unsatisfactory results will lead to adjustments in the variogram and kriging 

parameters. Such adjustments will lead to more satisfactory validation results. 

4. Results   
Here we provide the results for parts of the West Coast of the United States. The selected 

fitting model for each is the Stein variogram (Figure 2, Figure 3, Figure 4). Spatial 

patterns of the kriged surface show that disturbance is higher around city centers. 

Transitions between states are smooth for CA and AZ, though this is not the case with 

OR to WA. Oregon and Washington both contain large areas with similar values. Kriged 

values have been rescaled to 0-10 to avoid comparison to traffic values. (Figure 5) 

 

 
Figure 2. Variogram for log-transformed Washington State AADT data 
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Figure 3. Variogram for log-transformed Oregon State AADT data 

 

 
Figure 4. Variogram for log-transformed Nevada State AADT data 
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Figure 5. Kriged Predicted Surface for AZ, CA, NV, OR and WA 
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Table 2. Training and testing analysis for five Western States 

 

Figure 6. Validation residuals for Training and Testing data for five states 

 

The circular and patterned nature of the kriged surface is expected. For kriging, 

uniformly distributed data collection points is the norm. Given a large distance between 

points, variation of the kriged surface will stagnate around the mean of the entire data set. 

Spatial patterns are highly affected by the distribution of the sample locations along the 

road network.  

Given the inconsistent data collection and spatial distribution of points between states 

(e.g. North Carolina has a factor more points than many other states of equal area) we 

expect a certain level of individual adjustment for each states variogram and raw data.  

We report in Table 2 the accuracy and error for training and testing using a 70 to 30 

percent ratio. Raw error metrics and the proportion of error to the datasets max value are 

included. The wide range of residual values for Nevada in Figure 6 is presumably due to 

the low number of points within the state, at least when compared to the four other states.  

Steps for improvement include the spatial selection of points using more up to date 

TIGER roads, (specifically the 2014 dataset), expansion of the kriging areas outside of 

state political boundaries (fauna has no knowledge of the state boundaries artifacts such 

as the Four Corners), and comparison of our traffic disturbance index to other commonly 

used proxies for ecological disturbance such as distance to roads. 
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The final poster will include more figures and tables. These will include all analysis 

results for all 48 states. 
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