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Abstract	

An increasing number of spatial agent based models (ABMs) use artificial intelligence to 

enhance agents’ decisions. There is a difference between ABMs with pure social 

intelligence based on information exchange among agents and ABMs with integrated 

spatial intelligence. Spatial intelligence refers to the fact that agents sense their 

environment, perform a judgement on the condition of this environment, and change their 

behaviour based on this judgement. When spatial intelligence is used in ABMs, it often 

facilitates navigation (human or animal) or adaptation to land cover change. Less 

implementations are available for assessing risky situation engaging agents’ risk 

perception. In this paper, we present a model that uses a combination of spatial and social 

intelligence to simulate disease diffusion. Agents evaluate changes in floating plastic debris 

in a river combined with personal information and media attention on cholera to decide 

which water source to use. Cognition of agents with respect to perceiving risk and acting 

upon it is implemented via two Bayesian Networks. Modelling results are compared with 

data collected during a Massive Open Online Course. Results of the ABM show a strong 

decline of the number of disease cases after implementation of artificial intelligence. 

Results from the survey confirm the fact that people judge quality of water visually, but 

also show the strong influence of communication on risk perception. 
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1.	Introduction	
Spatial intelligence is one of the elements of the theory of multiple Intelligences developed by Gardner 

(2006). In agent-based models, spatial intelligence is often applied for navigation (human or animal) or 

adaptation to land cover change (Kocabas and Dragicevic, 2013). Fewer examples exist in which spatial 

intelligence is associated with spatial risk perception. How does the spatial environment, and especially 

changes in this environment, influence individual risk perception? How can artificial intelligence 

algorithms assist in creating spatially and socially intelligent agents operating in risky environments?  

Risk perception is often the result of a combination of signals that a person receives. It may result from 

information received via (social) media, direct communication or observations made in the spatial 

environment (change detection). The judgement of all of these signals may differ per individual based 

on four factors including the type of risk, the context in which the risk is perceived, the personality of 

the person and the social context (Wachinger and Renn, 2010). Psychology approaches this subject 

using Protection Motivation Theory (PMT), which is often applied in the health domain (Maddux and 

Rogers 1983; Xiao et al. 2014). PMT assumes that a person facing a risky situation goes through a two-

stage cognitive process: risk appraisal followed by a coping appraisal. The former is about checking 

risk and evaluating if risk perception is high enough to take action. The latter stage concerns possible 

options and taking an action.  

Risk perception can greatly impact the spread of diseases (Kitchovitch and Lio, 2012). When 

individuals are aware of risk, they may change their behaviour to prevent infection. Often the risk 

awareness is modelled at two levels: global level and location or personal level (Kitchovitch and Lio, 

2012). In these models, no split is made between social and spatial elements. In this research, we focus 

explicitly on the spatial risk perception. 

Risk perception is complex and therefor can best be implemented using Artificial Intelligence. In this 

research, we will use an existing agent-based cholera model to include spatial risk perception using 

Bayesian Networks. As little data is available on spatial risk perception, we will collect behavioural 

data using a Massive Open Online Course (MOOC).  

Objectives of this paper are twofold: 

- To examine the effect of spatial and social risk perception on disease spread 

- Compare the risk awareness of agents with data collected on risk perception of MOOC 

participants. 

 
 

	 	



3	
	

2.	Methods	

2.1.	Model	

For this study we used the cholera model for Kumasi Ghana developed by Augustijn et al. (Augustijn 

et al., 2016). Figure 1 illustrates the processes included in this Cholera ABM model that every agents 

pass through during the simulation. As it is impossible to visually detect the presence of cholera bacteria 

in water, we assume that the safety of drinking water is assessed via the level of visual pollution at water 

collection points. The fact that individuals rely on personal observations when assessing the quality of 

drinking water is supported by literature (Crampton and Ragusa, 2016).  

 
Figure 1: Implementation of Cholera Processes including PMT 

	

We model floating plastic debris in river water spread by heavy rainfall and use the perception of 

pollution as an indicator for the safety of the drinking water. When dumpsites are present at the 

riverbanks it is likely that some dumped materials will end up in the river. We refer to this as basic 

visual pollution (VP1) this can also be interpreted as the rate at which garbage enters the river. VP1 is 

calculated for every water collection point once a day based on the number of open refuse dumpsites 

that are located within a distance of 200 meters from the river. Thus, the basic visual pollution is 

modelled as:  
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where N is the number of dumpsites around the river water collection points; x is the number of 

households who use the dumpsite; g is the amount of garbage produced by each household; and d is the 

distance from the dumpsites to the water point (1 m £ d £ 200 m).  

We assume that during dry days the garbage in the river will remain relatively static (limited amount 

will be transported). The implementation of VP1 leads to variation in visual pollution in space (water 

looks visually clean around the springs and more polluted in downstream areas) and in time (water 

becomes more polluted during and after heavy rainfall). We combine the risk perception via spatial 

cognition with other factors that induce risk. This includes media, memory and personal 

communication. 

 

2.2.	Cognition	

Cognition was implemented using a twostep Bayesian network (BN) to imitate the two PMT steps. One 

BN is for risk appraisal, i.e. assessing risk perception of individual agents based on a combination of 

signals (environmental, social and personal communication). The second BN is for coping appraisal to 

select the alternative water sources that used by the agents. The second BN can lead to four different 

alternative actions: use the river water, try to find a cleaner location to collect river water, use the river 

water after boiling, buy bottled water. 

 

2.3.	Data	collection	

Since little is known about spatial risk detection especially in developing countries, we collected data 

during the MOOC GeoHealth (2016) that embraced 3500 participants from 92 countries (54% of them 

were from Africa including Ghana). Participants were divided into four groups of equal size and were 

shown different pictures of rivers. These pictures differ in colour of river water and level of floating 

debris (only on banks – in banks and in water). All participants answered the same questions, in which 

we tested two elements: 

¨ their trust in the quality of the water based on visual perception only 

¨ their trust in the quality of the water based on visual perception in combination with other 

types of information (media, communication). 
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2.4.	Experiments	

We conducted experiments with VP1 (visual pollution around dumpsites Figure 2) and compare the 

impact of various factors on the dynamics of risk perception in the agent population with the outcome 

of the MOOC survey 

	
Figure	2	Simulated	levels	of	visual	pollution	(VP)	around	open	dumpsites.	Higher	levels	of	VP	are	observed	for	dumpsites	

closer	to	the	river.	
	

 

 

3.	Initial	Results	

The data collected during the MOOC GeoHealth indicates that people indeed judge the quality of 

drinking water by visual appearance. Where the cleanest water scores 67% on willingness to drink the 

water, the most visually polluted water only scores 20% (Table 1). We also observed that the impact of 

media and neighbour contacts as willingness to drink the water drops to 16 and 18%.  

When comparing the results of the African participant group with the total MOOC participant group we 

see that more people (78%) have willingness to drink the cleanest water, and also more people (40%) 

use the most polluted water (Table 1).  
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Table	1:	The	percentage	of	individuals/agents	that	use	the	water,	in	which	ABB	is	a	picture	showing	clean	water,	BBA	is	a	
picture	with	brown	water	but	no	plastic	debris,	AAB	has	plastic	debris	on	the	river	banks,	and	ABA	has	plastic	floating	in	the	
water	

Perceiving Risk 
elements 

MOOC (all participants)  MOOC (Africa Participants) Cholera 
ABM  

 ABB 
(%) 

BBA 
(%) 

AAB 
(%) 

ABA 
(%) 

ABB 
(%) 

BBA 
(%) 

AAB 
(%) 

ABA 
(%) 

(%) 

Visual Pollution only 67 55 24 20 78 54 33 40 92  
Visual pollution and 
communication with 
neighbours 

16 30 22 10 17 46 50 13 52 

Visual pollution, 
communication with 
neighbours and media 

18 23 20 6 11 31 33 7 22 

 

When we compare these values with the agents that used BN1 (perceived risk) in the simulation model 

the modelling experiments show values that are considerably higher (92%, 52% and 22%) compared to 

the MOOC values. This is not surprising as MOOC participants are normally highly educated and are 

more risk aware.  

The communication with neighbours has an impact on individuals risk perception in the model which 

is in line with African MOOC participants. The combination of all three types of information has the 

stronger impact on risk perception in the model as well as in the MOOC, 22% of the agents in the 

cholera model use the water.  

After perceiving risk and rejecting to drink the water a choice has to be made on alternative water 

sources (coping appraisal captured in BN2). MOOC participants were only given the choice between 

two alternatives (e.g. use the water or walk to another location) whereas the agents in the simulation 

could choose from all coping options. 

The results of the MOOC indicate that a high percentage is willing to walk to an alternative location or 

boil the water (Table 2). The results for African participants are comparable to total participant results.  

In the simulation after using BN2, 27% of the agents walked to a different location to fetch water, 69% 

boiled the water and the remaining agents used the water as is or bought bottled water. 

Table	2:	Willingness	of	MOOC	participants	to	walk	to	an	alternative	location	or	boil	the	water.	

Individuals/Agents 
Decision 

MOOC (all participants)  MOOC (Africa Participants) 

 ABB 
(%) 

BBA 
(%) 

AAB 
(%) 

ABA 
(%) 

ABB 
(%) 

BBA 
(%) 

AAB 
(%) 

ABA 
(%) 

Walking to another 
location/water source 71 85 90 94 72 69 67 93 
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Using current water after 
boiling it 84 80 61 59 89 69 83 67 

 

When implementing the two BNs, we see a drop in the total number of disease cases to a level of 

approximately 10% of the original numbers. This confirms the findings of Kitchovitch and Lio (2012) 

which implies the role of risk perception in the dynamics of disease transmissions. The number of 

disease cases for only BN1 at the risk appraisal stage are comparable to the results of using both 

networks. However, we see a clear trend towards using safer water sources.  

The spatial patterns of disease cases show 15 – 20 % of the total cases in areas which are close to springs 

(upstream). This implies that although agents were looking for visually clean water they still get 

infected. 

Risk appraisal based on spatial intelligence is not easy to measure. Limited data are available about the 

way the spatial environment impacts human decision making. Most sources discussing risk perception 

will evaluate how risk perception varies in space but not which role the environment itself plays in the 

process of feeling scared. Implementation of spatial intelligence in agent-based models is relative 

straightforward. Yet, finding suitable data to validate the processes remains a challenge. 
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