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Abstract

This paper describes a decomposition of three commonly used measures of correlation, Pearson's r , Spear-

man's ρ and Kendall's τ . As the individual components sum to the global statistics these decompositions

could the thought of as a LISA. We illustrate their use with an example using the Georgia educational

attainment data. These coefficients are also special cases of a generalised correlation coefficient.
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1. Correlation

`CorrelaƟons are difficult to assess and interpret' warns Chaƞield (1995, p.167). Nevertheless they are fre-
quently used in the exploratory stage of an analysis as theymeasure linear associaƟon. A number of popular
choices are available include Pearson's (1896) product-moment correlaƟon coefficient, Spearman's (1904)
rank correlaƟon coefficient (ρ) and Kendall's (1938) τ , another rank correlaƟon coefficient. The three mea-
sures are related as will be discussed later.

As exploratory staƟsƟcs correlaƟons should perhaps not be examined in isolaƟon, but with a visualisaƟon
in a scaƩerplot or scaƩerplot matrix. Anscombe (1973) demonstrates that very different configuraƟons in
a scaƩerplot can have idenƟcal correlaƟon coefficients and regression lines. Once the number of variables
involved increases, so the number of possible pairings, ((n2 − n)/2), increases rapidly and the analyst may
be encouraged towards techniques for dealing with mulƟvariate correlaƟon structures such as principal
component analysis (PCA).

A formula for the Pearson (1896) product moment coefficient between two variables x and y is:

r =

∑
(xi − x̄)(yi − ȳ)√∑

(xi − x̄)2
∑

(yi − ȳ)2
Equation 1

which is the raƟo of the covariance to the product of the standard deviaƟons of the two variables in ques-
Ɵon.

A frequently quoted formula for Spearman's ρ is:

ρ = 1− 6
∑

d2
i

n3 − n Equation 2
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where di is the difference between the the rank posiƟons on each variable. This may be derived by noƟng
that the definiƟon of ρ is equivalent to r where the values of the variables replaced by their rank posiƟons.
Spearman (1904, p87) in discussing the ``method of rank differences'' also presents the alternaƟve:

ρ = 1− 3
∑

|di |
n2 − 1

Equation 3

which he suggests differs from r by a factor of
√

r3.
Kendall's (1938) τb examines all possible pairings of the observaƟons and sums the concordant and discor-
dant pairings with a correcƟon for Ɵed observaƟons. Kendall's coefficient can be computed from:

τ =
P − Q√

(P + Q + xt − xyt)(P + Q + yt − xyt)
Equation 4

where P is the count of concordant pairs, Q the count of discordant pairs, xt the count of observaƟons
where the xs are Ɵed, similarly for yt , and xyt the count of pairs for which both variables are Ɵed.

2. Decomposing the coefficients

The numerator in each case is a summaƟon of measures of the covariaƟon of the variables in quesƟon. For
r , ρ and τ the individual elements can be considered separately, and when divided by the numerator they
become the components of a decomposiƟon of each coefficient. They can then be used to show:

• the contribuƟon of each observaƟon to the global staƟsƟc
• the influence of each observaƟon on the global staƟsƟc

The laƩer allows us to determine whether any of the individual locaƟons can be considered as outlying in
some sense.

Anselin (1995) suggests that a LISA saƟsfies the requirements of:

1. yielding an indicaƟon of the extent of significant spaƟal clustering of similar values around each ob-
servaƟon

2. the sum of the individual values is proporƟonal to the global indicator of spaƟal associaƟon.

Anselin demonstrates local decomposiƟons of Moran's I and Geary's C , as well as GeƟs and Ord's (1992) G
and G∗ staƟsƟcs. The first of Anselin's requirements implies the existence of a inferenƟal framework. We
see the local versions of r , ρ and τ as very much part of an exploratory framework, although the existence
of outlying values points to the locaƟons of unusual data in either each or both variables. Unlike I , C , or
G the correlaƟon decomposiƟons provide a measure of spaƟal associaƟon between a pair of variables and
not just a single variable. The decomposiƟons also show us where the covariaƟon is strongest.

Hawkins (1980) characterises an outlier as an observaƟon which deviates so much from other observaƟons
as to arouse suspicions that it was generated by a different mechanism. In this respect observaƟons in
which the individual product of the deviances is outlying in the boxplot would be worth scruƟny as either
potenƟal hot spots or cold spots. These would be hot or cold spots of associaƟon. A permutaƟon test
could be used to determine whether the values were significant. We do not need a weight matrix with
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Figure 1: Boxplots of Distributions of Local Correlation Decompositions
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Figure 2: Pairwise Scatterplots of Local Components of Correlation (r ↔ ρ, r ↔ τ and ρ ↔ τ)

the decomposed correlaƟon coefficient. Wall (2004) has also observed that weights matrices can induce
undesirable dependencies into CAR and SAR models.

3. Example - Educational Attainment in Georgia

We illustrate the local decomposiƟons of the three coefficients by considering the local relaƟonships be-
tween the proporƟon of residents educated to bachelor's level or higher to the proporƟon of residents
born outside the USA.

It is instrucƟve to examine the relaƟonship between the individual components of the threemeasures.

The boxplot (Figure 1) shows the distribuƟons of the components when divided by their corresponding
global values. The Pearson and Spearman components have similar distribuƟons, with some larger outlying
values among the Pearson components. Themedian of the Kendall values is slightly larger, and the variability
of the distribuƟon is lower than the other two. The Kendall values have two low-valued outliers. We can
compare the distribuƟons in scaƩerplots (Figure 2).

The r and ρ distribuƟons are reasonably closely related, which is hardly surprising given their derivaƟon.
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Figure 3: Local Components of Correlation vs. Geographically Weighted Equivalents

There is more variaƟon in the τ values. To what extent does the Geographically Weighted CorrelaƟon coef-
ficient mirror any of these coefficients? This is invesƟgated in Figure 3.

The results are illuminaƟng. The GW coefficients are on the y-axis of each plot. They represent the locally
weighted correlaƟon between the two variables, and include the neighbouring observaƟons under each
kernel. In the case of the plots shown here, the kernel size was determined to obtain the best fit from a
GW regression model - there are 109 neighbours. Decreasing the size of kernel decreases the number of
observaƟons in both the numerator and denominator, whereas with the decomposed coefficient, all the ob-
servaƟons contribute to the denominator. Not surprisingly, the plots suggest that the GW and decomposed
coefficients measure different phenomena.

4. Generalised Correlation Coefficients

Kendall (1948) points to Daniels (1944) as the originator of a generalised correlaƟon coefficient Γ of which
the product moment correlaƟon coefficient, Spearman's (1904) rank correlaƟon coefficient and Kendall's
(1928) τ are special cases.

The generalised coefficient is given by:

Γ =

∑
aijbij√∑
a2ij

∑
b2

ij

Equation 5

The ij subscripts indicate that the summaƟon is over all values of i and j from 1...N .

Statistic aij bij
Pearson’s r xj − xi yj − yi
Spearman’s ρ j − i j − i
Kendall’s τ ±1 j ≷ i ±1 j ≷ i

Table 1: Generalised Correlation Forms for r , ρ and τ

This gives great flexibility in arriving at a set of complementary measures of correlaƟon. The numerator
is a measure of covariaƟon, and the denominator ensures that the resulƟng dimensionless staƟsƟc scales
between -1 and +1. There may well be other measures of associaƟon which fit into this framework.
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5. Do we have another LISA?

The decomposiƟons are candidates for consideraƟon as a LISA in that their values add up to the value of the
parent coefficient. Anselin's chosen measures provide a local version of a global coefficient, but for a single
variable at a Ɵme. The decomposed coefficients also provide a local version of a global coefficient, which
shows where a pair of variables are most strongly associated. In this sense, they are a LISA.

While the Pearson and Spearman coefficients are widely encountered in the social sciences as measures
of correlaƟon the relaƟve infrequency of Kendall's coefficient is puzzling. Moran (1948) comments on the
`superiority of τ as a measure of rank correlaƟon', and a few months later Daniels (1948) remarks that it
`is seen to measure in a rather arbitrary sense the degree of agreement between ranks'. Daniel also notes
Moran's observaƟon that τ is related to the `least number of interchanges required to bring the two rankings
into perfect agreement'. Perhaps greater use of τ might be made in preference to ρ as a non-parametric
measure of correlaƟon.
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