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Abstract 

Allergic rhinitis (hay fever) resulting from seasonal pollen affects 15-30% of the population 

in the United States, and can exacerbate several related conditions including asthma, atopic 

eczema, and allergic conjunctivitis.  In this paper, we reconstruct the dynamics of pollen 

concentrations across the Eastern United States at a very fine scale by interpolating daily pollen 

counts in space and time, obtained from a custom web scraper from February 3rd, 2016 

toDecember 14th, 2016.  We conducted a space-time cross-correlation and inferred the optimal 

spatial and temporal range at which correlation vanishes.  Given the sheer volume of the 

computation requirement, we adopt a parallel computational approach facilitated by a 

spatiotemporal domain decomposition algorithm.  We visualize the results in a 3D-enviornment, 

revealing the space-time patterns of pollen season.  This method improves the understanding of 

large-scale seasonal pollen patterns that may aid physicians with treatment plans for sensitive 

patients, such as limiting outdoor exposure or physical activity.   Our approach is portable to 

analyze other large spatiotemporal explicit datasets obtained from the web, such as air pollution 

and precipitation. 
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1. Introduction 

Allergic rhinitis (hay fever) resulting from seasonal pollen affects 15-30% of the 

population in the United States (US), and causes or exacerbates several associated conditions 

including asthma, atopic eczema, and allergic conjunctivitis (Wheatley and Togias 2015).  

Allergic rhinitis is responsible for approximately 2 million missed school days and 3.5 

million missed days of work in the US, annually (Nathan, 2007).  Allergy to pollen is 

contained within the broader respiratory health issue and works in conjunction with asthma, 

air pollution, and chronic obstructive pulmonary disease weaving a complex fabric of 

breathing-related health risks (Charpin and Caillaud, 2014). Accurately monitoring and 

predicting pollen counts can aid physicians to develop treatment plans for their patients and 

inform allergy sufferers to limit physical activity and outdoor exposure (Levetin and Van de 

Water 2003).  

Pollen samples are collected at monitoring stations by an air sampling device. The 

pollen concentration is determined by counting the number of grains per cubic meter of air, 

and subsequently, the concentration is converted to an index. Current pollen detection 

stations are sparsely distributed.  In the United States, the National Allergy Bureau collects 

data at various locations but not every state has a pollen monitoring station.  It is, therefore, 

essential to predict pollen concentrations at unmonitored times and locations, especially since 

pollen distribution is a continuous phenomenon.   

Interpolation techniques can estimate pollen concentrations at unsampled locations 

based on the values at known locations (Goovaerts 1997; Kyriakidis and Journel 1999). In the 

interpolation process, the importance of locations where pollen is measured is directly a 

function of (1) the distance to the location where pollen is being estimated (2) the temporal 

difference between the sampled and unsampled locations.  Spatiotemporal interpolation has 

been used extensively to study meteorological processes (Hussain et al. 2010; Cao et al. 
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2015) and disease (Gething et al. 2007), air pollution and air quality such as concentrations of 

PM 2.5 (Li et al. 2014), ozone (Fang and Lu 2011), nitrogen dioxide (Pebesma et al. 2007) 

and carbon dioxide concentrations (Guo et al. 2015).  However, research regarding 

spatiotemporal interpolation of pollen concentrations is scarce (Alba et al. 2006; Garcia-

Mozo et al. 2006; Siska et al. 2006; DellaValle et al. 2012; León Ruiz et al. 2012; Siska et al. 

2012; Aguilera et al. 2015; Rojo and Pérez-Badia 2015).  For example, DellaValle et al. 

(2012) interpolated pollen counts from 14 allergy monitoring stations using ordinary kriging 

in the northeastern and mid-Atlantic region of the United States.  Alba et al. (2006) and Rojo 

and Pérez-Badia (2015) also used kriging approaches to analyze pollen concentrations from 

Olive plants in Spain.    

Spatial analytical methods such as interpolation and clustering techniques can be 

computationally prohibitive. This may result in unacceptably slow applications that have 

execution times which explode with increasing resolution and scale of analysis (Hohl et al., 

2016). Therefore, analyzing datasets of increasing size, diversity and availability necessitates 

accelerated processing capabilities, which are offered by high-performance parallel 

computing (HPC). HPC provides answers to complex and voluminous computational 

problems within short time, and enables us to extract spatiotemporal patterns of pollen 

concentration.  

 
Figure 1: Framework of parallel spatiotemporal interpolation of pollen counts. 

We propose a framework (Figure 1) that extracts daily pollen count data from a 

popular weather website, applies parallel computing techniques to estimate the space-time 

variation of pollen concentration, and visualize pollen dynamics in a 3D environment to 

facilitate the identification of distinct allergy seasons.  Our framework is flexible and portable 

to other case studies attempting to estimate the space-time variation of air pollution 

phenomena. The parallel computing approach developed in this paper is particularly 

attractive when such estimations must be conducted and at fine scale. 
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2. Data and Methods 
Our study area (Figure 2) is located in the eastern United States across 31 states and the 

District of Columbia (DC).  The eastern United States combines high levels of net primary 

productivity with high population densities.  The set of zip codes was selected following a 

stratified random sampling approach, and augmented with zip codes in densely populated 

areas, forming 3,193 zip codes for which daily pollen counts were collected.  

Pollen Counts 

We collected daily pollen counts from February 3rd 2016-December 14th 2016 (315 days).  

The data was extracted from Weather Underground’s website using a custom web scraper.  

The resulting dataset (n=708,562 observations) includes the zip code, pollen count, 

coordinates of the zip code centroids, and Julian day. The pollen index ranges between zero 

and twelve, which combines the pollen levels from a variety of pollinating allergenic plant 

types (e.g. trees, grasses, and weeds) into a single value.   

 

Figure 2: Selected zip codes and their associated centroids (n=3,193).  Each centroid acts as a 

sample point (known location) for the spatiotemporal interpolation. 

Space-time Interpolation  

To estimate pollen concentrations at unmonitored times and locations, we propose a variation 

of Li et al.’s (2014) space-time inverse distance weighted approach (ST-IDW): 

𝑤𝑟(𝑥, 𝑦, 𝑡) = ∑ λ𝑖𝑤𝑖

𝑁𝑟
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Equation (1) computes the interpolated value w at a three-dimensional location (x, y, t), using 

pollen count observations at known locations that fall within the specified spatiotemporal 

bandwidth 𝑁𝑅.  𝜆𝑖 are the weights assigned to the known locations 𝑤𝑖.  Note that the known 

locations 𝑤𝑖 are the centroids of the 3,193 zip codes at day t shown in Figure 2.  In Equation 

(2), the exponent p influences the weight of each known location in the spatiotemporal search 

radius, which is determined by a space-time variogram.  Larger exponents will allocate less 

weight to points that are farther away from the unknown location.  For this study, p is 

assigned a value of 2.  Equation (3) calculates the spatiotemporal distance, where both the 

temporal and spatial distances are normalized between 0 and 1; normalization is necessary 

because of the very large range of spatial distances (meters) and very small range of temporal 

distances (days).  We apply Equation (3) to a space-time grid of 5km by 5km spatial 

resolution and 1-day temporal resolution. We compute a space-time variogram to identify the 

space-time range at which pollen observations do not correlate with one another anymore, 

essentially calibrating the spatiotemporal bandwidth 𝑁𝑅 (Sherman 2011): 

 

�̂�(ℎ, 𝑢)  =  
1

2𝑛(ℎ,𝑢)
∑ {𝑤𝑖 − 𝑤𝑗}

2
𝑛(ℎ,𝑢)      (4) 

 

Given a particular combination of spatial (h) and temporal (u) separations among observed 

locations, Equation (4) sums the difference in pollen concentration, and divides that value by 

2n, which the number of pairs of observations within those distance constraints. The space-

time variogram was estimated in R (using libraries sp and gstat). 

 

Space-time Domain Decomposition 

We split the large and complex task of computing ST-IDW for the pollen dataset into 

subtasks, which we distribute among multiple processors (CPUs) in parallel. To balance the 

computational workload among processors and therefore, increase efficiency while 

decreasing execution time, we perform spatiotemporal domain decomposition. We apply a 

recursive quadtree decomposition algorithm on the spatial domain of the pollen dataset, while 

splitting the temporal domain in a regular fashion (Hohl et al. 2016).  The spatial distribution 

of pollen counts is heterogeneous (small zip code areas form clusters in urban areas) while 

the temporal distribution is not (daily values), except some periods where data collection had 

stopped. Therefore, it made sense to implement a spatially adaptive and temporally static 

decomposition Ding and Densham 1996) algorithm. 

 

We choose two parameters: 1. A decomposition threshold (td) which should be much 

lower than the number of pollen counts, 2. A buffer ratio threshold (tb), which is less than 1. 

Together, they guide the granularity of decomposition: Low thresholds result in fine-grained 

decomposition, which facilitates load balancing, as distributing many small tasks will likely 

result in equal shares among processors than distributing larger tasks. However, this leads to 

deep levels of recursion and ultimately, a crash of the program. Therefore, we chose td = 5000 

and tb = 0.025, which balances the granularity of decomposition versus the danger of stack 

overflow.  

 

Parallel computing 

We use Python and R for software implementation and deploy them on a high-performance 

computing cluster which has 32 nodes that are connected by an infiniband network switch. 

Each computing node has 12 CPUs and 12 GBs of memory, resulting in a total of 384 CPUs 

(Intel Xeon processors, 2.67 GHz clock speed). 
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3D Visualization  

We visualize the results of the interpolation in a space-time cube (Nakaya 2013) to reveal the 

spatiotemporal patterns of allergy season.    Each individual voxel contains a pollen count 

that was estimated according to Equation (3).  Volumetric data are challenging to visualize, 

however recent advances have proven particularly useful to portray patterns of 3D geographic 

data (Demsar and Virrantus 2010, Delmelle et al. 2014). Once pollen counts are estimated for 

each voxel, they can be visualized by color-coding each voxel based on its pollen value. We 

create a volume of pollen values using a rainbow color scheme. Voxels with a pollen value of 

9 and over are colored using dark red, values lower than 5 are colored using dark blue shades, 

and so on. Given the number of voxels to visualize, we use volume rendering. From a public 

health perspective, we are interested to visualize regions where pollen counts are particularly 

elevated. As such, the transparency level of each voxel is adjusted based on its pollen value 

(voxels with lower interpolated pollen values are assigned a higher level of transparency, 

whereas higher pollen values are kept opaque).  

 

3. Results 

Figure 3 illustrates the result of the space-time variogram that estimates the optimal 

spatiotemporal bandwidth for our interpolation.  We implemented 25 temporal lags of 3 days 

each and 30 distance lags of 100km each.  The temporal component of the variogram flattens 

out around 45 days and the spatial component flattens our around 1,750km.   

 
 

Figure 3: Space-time variogram of pollen data. 

 

Figure 4 provides a 3D visualization of the spatiotemporal interpolation of pollen 

concentrations, illustrates the continuous dynamics of the pollen season.  We observe a 

cluster of high pollen counts in Florida from early-to-mid spring.  There are also smaller 

clusters of high pollen counts in the northeastern U.S. that occurred in mid-spring to early-

summer.  This corresponds to the northern U.S. having shorter growing seasons, therefore, 

the number of days between pollen clusters is lower in the North and higher in the South.   

Allergy season also occurs later in the northern United States because of a variety of climatic 

factors (e.g. temperature).   
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Figure 4: Space-time variation in interpolated pollen values in our study region. 

 

According to our visualization, allergy season substantially diminishes in July until 

late-summer and early-fall.  There is a cluster of high pollen counts in the northeast that 

occurs in September.  There is also a cluster of high pollen counts that occurs in October-

November in the southern portion of our study region.  This “reverse wedge” is a result of 

New England plants blooming earlier in the fall because of the potential early snow.  Fall 

blooming plants do not produce the same pollen levels as spring blooming plants, so the 

number of days between pollen clusters is lower than the clusters seen in the beginning and 

middle of 2016.  Overall, our 3D visualization reconstructs the dynamics of allergy season 

during 2016 in the Eastern United States.              
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